This thesis focuses on the optimazation of the electrochemical method, which characterizes products of untemplated nonenzymatic polymerization of 3',5' -cyclic guanosine monophosphate (cGMP) under conditions modeling prebiotic environment. An adsorptive transfer stripping techniques on carbon electrode and gel electrophoresis were used. The method was optimized on the model system of oligonucleotides located in solution of cGMP on carbon electrode, where DNA and RNA adsorb. This technique allows simple removing of interfering substances such as cGMP, which are not present in the original sample, but they do not adsorb on the surface of electrode or they adsorb weaker than oligonucleotides or polynucleotides. Analyses are based on the selective desorption of cGMP from the surface of the carbon electrode by the chemical and physical methods before the measurement of linear voltammetry itself. Detergents, such as SDS, Tween 20 and Triton x-100 with different concentrations and electrostatic repulsions of cGMP with different negative potentials on the carbon electrode were used for the selective desorption of cGMP. The selective desorption of cGMP was observed for all detergents and inserted negative potentials. Used methods were compared and the most effective detergent for selective desorption of cGMP was SDS. Desorption of oligonucleotides was minimalized by inserted positive potential on washed carbon electrode in 0,01% SDS in basic medium. This optimized method was used on electrochemical analysis of preliminary samples of untemplated nonenzymatic polymerization of 3',5' -cGMP and compared to the analysis of gel electrophoresis.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:401876 |
Date | January 2019 |
Creators | Hesko, Ondrej |
Contributors | Vacek,, Jan, Špaček,, Jan |
Publisher | Vysoké učení technické v Brně. Fakulta chemická |
Source Sets | Czech ETDs |
Language | Slovak |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds