Return to search

Aspectos estatísticos da amostragem de água de lastro / Statistical aspects of ballast water sampling

A água de lastro de navios é um dos principais agentes dispersivos de organismos nocivos à saúde humana e ao meio ambiente e normas internacionais exigem que a concentração desses organismos no tanque seja menor que um valor previamente especificado. Por limitações de tempo e custo, esse controle requer o uso de amostragem. Sob a hipótese de que a concentração desses organismos no tanque é homogênea, vários autores têm utilizado a distribuição Poisson para a tomada de decisão com base num teste de hipóteses. Como essa proposta é pouco realista, estendemos os resultados para casos em que a concentração de organismos no tanque é heterogênea utilizando estratificação, processos de Poisson não-homogêneos ou assumindo que ela obedece a uma distribuição Gama, que induz uma distribuição Binomial Negativa para o número de organismos amostrados. Além disso, propomos uma nova abordagem para o problema por meio de técnicas de estimação baseadas na distribuição Binomial Negativa. Para fins de aplicação, implementamos rotinas computacionais no software R / Ballast water is a leading dispersing agent of harmful organisms to human health and to the environment and international standards require that the concentration of these organisms in the tank must be less than a prespecified value. Because of time and cost limitations, this inspection requires the use of sampling. Under the assumption of an homogeneous organism concentration in the tank, several authors have used the Poisson distribution for decision making based on hypothesis testing. Since this proposal is unrealistic, we extend the results for cases in which the organism concentration in the tank is heterogeneous, using stratification, nonhomogeneous Poisson processes or assuming that it follows a Gamma distribution, which induces a Negative Binomial distribution for the number of sampled organisms. Furthermore, we propose a novel approach to the problem through estimation techniques based on the Negative Binomial distribution. For practical applications, we implemented computational routines using the R software

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-06052013-172123
Date01 March 2013
CreatorsEliardo Guimarães da Costa
ContributorsJulio da Motta Singer, Linda Lee Ho, Rubens Mendes Lopes
PublisherUniversidade de São Paulo, Estatística, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds