Since the discovery that diazomethane, CH2N2, can effect the cyclopropanation of alkenes under palladium catalysis in the 1960s, this reaction has been used to great effect in synthesis. However, the necessity of preparing and handling diazomethane, a toxic and explosive reagent, is unappealing. The substitution of diazomethane for a commercially-available and thermally-stable silylated congener, namely trimethylsilyldiazomethane (TMSDAM), has been investigated. Under optimised conditions, designed to promote protodesilylation, use of this reagent affords the same products as would be obtained with the more hazardous diazomethane, with no trace of the corresponding silylated cyclopropanes. NMR spectroscopy has revealed that the protodesilylating agent employed in the reaction, tetrabutylammonium bifluoride (n-Bu4N+ HF2 -, TBABF), reacts cleanly with TMSDAM to generate diazomethane. Under catalytic conditions, the consumption of the desilylated diazo reagent by palladium is sufficiently rapid to prevent the accumulation of this hazardous reagent in solution. Spectroscopic titration studies also revealed a “hidden” mode of TBABF catalysis, whereby adventitious water drives the regeneration of the bifluoride salt. This observation was exploited by the development of an EtOH-driven reaction variant in which catalytic amounts (20 mol%) of TBABF could be employed. The ability to effect the in situ generation of diazomethane has allowed for mechanistic studies into the course of the cyclopropanation reaction to be undertaken. These reveal a partitioning in the consumption of nascent diazomethane between the desired cyclopropanation reaction and a side reaction. The product of the side reaction was identified as cyclopropane (C3H6), the product of formal methylene cyclotrimerisation, by employing EtOD in TBABF-catalysed deuterodesilylative cyclopropanation. The partitioning between the two pathways is dependent on the nature of the substrate, with efficient cyclopropanation dominating with electrondeficient alkenes. For an electronically-varied range of styrenes, the relative rate of productive diazomethane consumption correlates well with the energy of the frontier molecular orbitals (as determined by DFT calculations). These results are consistent with an initial, substrate-dependent partitioning of the palladium pre-catalyst between species able to effect alkene cyclopropanation, and those (likely higher-order) species which promote only the cyclotrimerisation of diazomethane.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:700071 |
Date | January 2015 |
Creators | Poree, Carl |
Contributors | Lloyd-Jones, Guy ; Thomas, Stephen |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/17871 |
Page generated in 0.002 seconds