Return to search

Proton and deuteron spin-lattice relaxation measurements in the dilute gas for methane and its deuterated modifications.

The spin-lattice relaxation time T₁ has been measured for the proton and the deuteron resonances in methane -and its deuterated modifications as a function of density ƿ , at low densities where T₁ is proportional to ƿ ; and temperature T, between 110°K and 300°K. For the proton relaxation, plots of log T₁/ƿ versus log T for each of the gases CH₄₌ո Dո, n=0, 1, 2, 3 gave the temperature dependence of T₁/ƿ as T₁/ƿ∝T⁻³ʹ² . The value of T₁/ƿ at constant temperature changed very little with n. This implied that the main interaction contributing to proton spin relaxation was the spin-rotational interaction. For the deuteron results it was found that T₁/ƿ was nearly independent of temperature but differed by a factor of approximately four over the range of isotopic compositions n = 1, 2, 3,4. CD₄ gave the shortest value of T₁ while CHD₃ gave the longest. This was attributed to the dominance of the quadrupolar interaction of the deuteron over the dipolar and spin-rotational interactions. / Science, Faculty of / Physics and Astronomy, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/37585
Date January 1964
CreatorsBaskerville-Bridges, Frank George
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0023 seconds