Return to search

Resource allocation for D2D communications based on matching theory

Device-to-device (D2D) communications underlaying a cellular infrastructure takes advantage of the physical proximity of communicating devices and increasing resource utilisation. However, adopting D2D communications in complex scenarios poses substantial challenges for the resource allocation design. Meanwhile, matching theory has emerged as a promising framework for wireless resource allocation which can overcome some limitations of game theory and optimisation. This thesis focuses on the resource allocation optimisation for D2D communications based on matching theory. First, resource allocation policy is designed for D2D communications underlaying cellular networks. A novel spectrum allocation algorithm based on many-to-many matching is proposed to improve system sum rate. Additionally, considering the quality-of-service (QoS) requirements and priorities of di erent applications, a context-aware resource allocation algorithm based on many-to-one matching is proposed, which is capable of providing remarkable performance enhancement in terms of improved data rate, decreased packet error rate (PER) and reduced delay. Second, to improve resource utilisation, joint subchannel and power allocation problem for D2D communications with non-orthogonal multiple access (NOMA) is studied. For the subchannel allocation, a novel algorithm based on the many-to-one matching is proposed for obtaining a suboptimal solution. Since the power allocation problem is non-convex, sequential convex programming is adopted to transform the original power allocation problem to a convex one. The proposed algorithm is shown to enhance the network sum rate and number of accessed users. Third, driven by the trend of heterogeneity of cells, the resource allocation problem for NOMA-enhanced D2D communications in heterogeneous networks (HetNets) is investigated. In such a scenario, the proposed resource allocation algorithm is able to closely approach the optimal solution within a limited number of iterations and achieves higher sum rate compared to traditional HetNets schemes. Thorough theoretical analysis is conducted in the development of all proposed algorithms, and performance of proposed algorithm is evaluated via comprehensive simulations. This thesis concludes that matching theory based resource allocation for D2D communications achieves near-optimal performance with acceptable complexity. In addition, the application of D2D communications in NOMA and HetNets can improve system performance in terms of sum rate and users connectivity.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:766008
Date January 2017
CreatorsZhao, Jingjing
PublisherQueen Mary, University of London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://qmro.qmul.ac.uk/xmlui/handle/123456789/25990

Page generated in 0.0019 seconds