Return to search

Factors Contributing to Trimethylamine Generation from Limed and Polymer Conditioned Sludges

Trimethylamine, (CH3)3N, (TMA), odors are often associated with limed and polymer conditioned sludges. This odor has a fishy smell and can be a nuisance to the community surrounding a wastewater treatment plant or land application site. Several factors are thought to determine the amount of TMA generated from limed biosolids. These are, the presence of cationic polymer, the polymer dose, the time between addition of polymer and lime stabilization, shear imparted on the sludge in the dewatering process and dewatered cake solids concentration. All of these were investigated in this study. The results showed that TMA could be generated from sludge that did not contain polymer but the concentrations were low compared to sludge conditioned with cationic polymer. As the polymer dose increased, the TMA increased. Shear also showed to play an important role for TMA production. In addition to higher shear increasing the polymer demand, shear in itself can increase TMA generation. However, the most important factor in generating TMA was the time between conditioning and liming. If this time was minimized, little TMA was produced, even at high polymer doses. Data also suggests that methanogens play an important role in the breakdown of TMA. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/40874
Date27 June 2007
CreatorsSchneekloth, Eric John
ContributorsEnvironmental Engineering, Novak, John T., Murthy, Sudhir N., Randall, Clifford W.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationSchneeklothThesis.pdf

Page generated in 0.0168 seconds