This dissertation thesis deals with the application of expert systems and soft computing methods in field of power oil transformers. The main work is divided into theoretical and practical part. First, the theoretical part presents the basic elements of the transformer, and approaches to its diagnosis. The work focused mainly on the diagnostics of the insulation system, and diagnostic methods and approaches in this specific area. Next part describes the basics of expert systems and other soft computing methods such as: fuzzy logic, neural networks, genetic algorithms and their combinations and extensions. At the end of the theoretical part, the possibility of optimization approaches by means of artificial intelligence and its application in fuzzy model optimization are described. The practical part begins with description of the used data file that runs through the entire work. The work is then divided into four parts, namely in parts which deal with the expert system for transformer diagnostics, DGA module, prediction module, and optimization using artificial intelligence. The section describing the expert system gives specific information about the particular expert system. The means and techniques used for constructing given system are described, and then the complete system design and description of all subsystems and modules are presented. The next section describes the developed DGA module and all selected approaches to its implementation and expansion. At the end of the chapter, the results of comparison between all implemented methods are evaluated. The third part deals with the prediction module and describes its design and construction, including description of the main parts which are based on the selected predictive approaches. Also, the predictions of selected quantities from the data file are included. There are two predictive approaches being used: the one step prediction, and the multiple step prediction. The comparison of prediction accuracy and computational cost of given methods is presented at the end of this chapter. The last part deals with the possibilities of optimization using artificial intelligence methods, namely differential evolution, PSO, and genetic algorithms. Both the single-objective and the multi-objective optimization are considered. The methods are compared in a series of synthetic tests and then applied to optimize the fuzzy models of DGA tests from an earlier part of this work. The dissertation also includes chapters: "The Aims", "The Contribution of the Work", and a list of publications, products, and projects of the author.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:234173 |
Date | January 2013 |
Creators | Janda, Ondřej |
Contributors | Szabó,, Radek, Kratochvíl, Petr, Hammer, Miloš |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0024 seconds