Return to search

Image Enhancement & Automatic Detection of Exudates in Diabetic Retinopathy

Diabetic retinopathy (DR) is becoming a global health concern, which causes the loss of vision of most patients with the disease. Due to the vast prevalence of the disease, the automated detection of the DR is needed for quick diagnoses where the progress of the disease is monitored by detection of exudates changes and their classifications in the fundus retina images. Today in the automated system of the disease diagnoses, several image enhancement methods are used on original Fundus images. The primary goal of this thesis is to make a comparison of three of popular enhancement methods of the Mahalanobis Distance (MD), the Histogram Equalization (HE) and the Contrast Limited Adaptive Histogram Equalization (CLAHE). By quantifying the comparison in the aspect of the ability to detect and classify exudates, the best of the three enhancement methods is implemented to detect and classify soft and hard exudates. A graphical user interface is also adopted, with the help of MATLAB. The results showed that the MD enhancement method yielded better results in enhancement of the digital images compared to the HE and the CLAHE. The technique also enabled this study to successfully classify exudates into hard and soft exudates classification. Generally, the research concluded that the method that was suggested yielded the best results regarding the detection of the exudates; its classification and management can be suggested to the doctors and the ophthalmologists.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-18109
Date January 2019
CreatorsMallampati, Vivek
PublisherBlekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds