Return to search

Curvelet-domain preconditioned "wave-equation" depth-migration with sparseness and illumination constraints

A non-linear edge-preserving solution to the least-squares migration problem with sparseness & illumination constraints is proposed. The applied formalism explores Curvelets as basis functions. By virtue of their sparseness and locality, Curvelets not only reduce the dimensionality of the imaging problem but they also naturally lead to a dense preconditioning that almost diagonalizes the normal/Hessian operator.
This almost diagonalization allows us to recast the imaging problem into a ’simple’ denoising problem. As such, we are in the position to use non-linear estimators based on thresholding. These estimators exploit
the sparseness and locality of Curvelets and allow us to compute a first estimate for the reflectivity, which approximates the least-squares solution of the seismic inverse scattering problem. Given this estimate,
we impose sparseness and additional amplitude corrections by solving a constrained optimization problem. This optimization problem is initialized and constrained by the thresholded image and is designed to remove remaining imaging artifacts and imperfections in the estimation and reconstruction.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU.2429/430
Date January 2004
CreatorsHerrmann, Felix J., Moghaddam, Peyman P.
PublisherSociety of Exploration Geophysicists
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext

Page generated in 0.0015 seconds