Return to search

Super-hydrures sous pression pour le stockage de l’hydrogène et la supraconductivité : développement d’outils et résultats sur H3S, CrHx, LiBH4 et NaBHx. / Superhydrides under pressure for hydrogen storage and superconductivity : development of tools and results on H3S, CrHx, LiBH4 and NaBHx.

Récemment, sous des pressions de plusieurs gigapascals, de nouveaux hydrures ont été synthétisés avec des propriétés étonnantes potentiellement porteuses de ruptures technologiques pour le stockage de l’hydrogène ou la supraconductivité. Plusieurs superhydrures sont étudiés expérimentalement et simulés par DFT dans cette thèse. Les diagrammes de phases en pression de LiBH4 et NaBH4, deux composés d’intérêt pour le stockage de l’hydrogène, sont explorés par diffraction de rayons X, spectroscopie Raman et infrarouge jusqu’à des pressions de 300 GPa sans observer de décomposition. L’insertion d’hydrogène dans NaBH4 donne le super-hydrure NaBH4(H2)0.5. Pour éclaircir l’interprétation de la supraconductivité record à 200 K trouvée dans H2S sous pression, le super-hydrure H3S a été synthétisé à partir des éléments S et H. Les résultats de diffraction semblent en désaccord avec l’interprétation communément admise qu’H3S en phase Im-3m est responsable de cette supraconductivité et laisse la porte ouverte à d’autres interprétations. Enfin, les super-hydrures CrHx avec x=1, 1.5 et 2 ont également été synthétisés à partir des éléments et caractérisés par diffraction de rayons X. Si ces hydrures correspondent bien àceux qui avaient été prédits numériquement, l’absence des stoechiométries plus élevées est discutée. Pour mesurer les températures de supraconductivité calculées dans les superhydrures MHx, une cellule à enclumes de diamant miniature permettant une détection de l’effet Meissner a été développée. / Recently, under pressures of several gigapascals, new hydrides have been synthesised with striking properties that may herald technological breakthroughs for hydrogen storage and superconductivity. In this PhD thesis, several superhydrides have been studied experimentally and simulated by DFT. The pressure phase diagrams of LiBH4 and NaBH4, two compounds of interest for hydrogen storage, have been explored thanks to X-ray diffraction and Raman and infrared spectroscopy up to pressures of 300 GPa without observing any decomposition. The insertion of hydrogen inside NaBH4 generates the superhydride NaBH4(H2)0.5. To refine the interpretation of the record superconductivity found in H2S under pressure at 200 K, the superhydride H3S has been synthesised from S and H elements. The results of the diffraction study seem to be at odds with the commonly accepted interpretation that Im-3m H3S is responsible for the superconductivity observed and leaves the door open to other interpretations. Finally, CrHx hydrides with x = 1, 1.5 and 2 have also been synthesised from the elements and characterised by X-ray diffraction. Although these hydrides do correspond to the ones that had been numerically predicted, the absence of the expected higher stoichiometries is discussed. To measure the superconductivity temperatures calculated for MHx hydrides, a miniature diamond anvil cell which allows the detection of a Meissner effect has been developed.

Identiferoai:union.ndltd.org:theses.fr/2017SACLX115
Date14 December 2017
CreatorsMarizy, Adrien
ContributorsUniversité Paris-Saclay (ComUE), Loubeyre, Paul, Geneste, Grégory
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0056 seconds