A demanda por aplicações que processam vídeos digitais têm obtido atenção na indústria e na academia. Considerando a manipulação de um elevado volume de dados em vídeos de alta resolução, a compressão de vídeo é uma ferramenta fundamental para reduzir a quantidade de informações de modo a manter a qualidade viabilizando a respectiva transmissão e armazenamento. Diferentes padrões de codificação de vídeo foram desenvolvidos para impulsionar o desenvolvimento de técnicas avançadas para este fim, como por exemplo, o padrão H.264/AVC. Este padrão é considerado o estado-da-arte, pois proporciona maior eficiência em codificação em relação a padrões existentes (MPEG-4). Entre todas as ferramentas inovadoras apresentadas pelas mais recentes normas de codificação, a Estimação de Movimento (ME) é a técnica que provê a maior parcela dos ganhos. A ME busca obter a relação de similaridade entre quadros vizinhos de uma cena, porém estes ganhos são obtidos ao custo de um elevado custo computacional representando a maior parte da complexidade total dos codificadores atuais. O objetivo do trabalho é acelerar o processo de ME, principalmente quando vídeos de alta resolução são codificados. Esta aceleração concentra-se no uso de uma plataforma massivamente paralela, denominada GPU (Graphics Processing Unit). Os algoritmos da ME apresentam um elevado potencial de paralelização e são adequados para implementação em arquiteturas paralelas. Assim, diferentes algoritmos têm sido propostos a fim de diminuir o custo computacional deste módulo. Este trabalho apresenta a implementação e a exploração do paralelismo de dois algoritmos da ME em GPU, focados na codificação de vídeo de alta definição e no processamento em tempo real. O algoritmo Full Search (FS) é conhecido como algoritmo ótimo, pois encontra os melhores resultados a partir de uma busca exaustiva entre os quadros. O algoritmo rápido Diamond Search (DS) reduz significativamente a complexidade da ME mantendo a qualidade de vídeo próxima ao desempenho apresentado pelo FS. A partir da exploração máxima do paralelismo dos algoritmos FS e DS e do processamento paralelo disponível nas GPUs, este trabalho apresenta um método para mapear estes algoritmos em GPU, considerando a arquitetura CUDA (Compute Unified Device Architecture). Para avaliação de desempenho, as soluções CUDA são comparadas com as respectivas versões multi-core (utilizando biblioteca OpenMP) e distribuídas (utilizando MPI como infraestrutura de suporte). Todas as versões foram avaliadas em diferentes resoluções e os resultados foram comparados com algoritmos da literatura. As implementações propostas em GPU apresentam aumentos significativos, em termos de desempenho, em relação ao software de referência do codificador H.264/AVC e, além disso, apresentam ganhos expressivos em relação às respectivas versões multi-core, distribuída e trabalhos GPGPU propostos na literatura. / The demand for applications processing digital videos has become the focus of attention in industry and academy. Considering the manipulation of the high volume of data contained in high resolution digital videos, video compression is a fundamental tool for reduction in the amount of information in order to maintain the quality and, thus enabling its respective transfer and storage. As to obtain the development of advanced video coding techniques, different standards of video encoding were developed, for example, the H.264/AVC. This standard is considered the state-of-art for proving high coding efficiency compared to previous standards (MPEG-4). Among all innovative tools featured by the latest video coding standards, the Motion Estimation is the technique that provides the most important coding gains. ME searches obtain the similarity relation between neighboring frames of the one scene. However, these gains were obtained by the elevated computational cost, representing the greater part of the total complexity of the current encoders. The goal of this project is to accelerate the Motion Estimation process, mainly when high resolution digital videos were encoded. This acceleration focuses on the use of a massively parallel platform called GPU (Graphics Processing Unit). The Motion Estimation block matching algorithms present a high potential for parallelization and are suitable for implementation in parallel architectures. Therefore, different algorithms have been proposed to decrease the computational complexity of this module. This work presents the implementation and parallelism exploitation of two motion estimation algorithms in GPU focused in encoding high definition video and the real time processing. Full Search algorithm (FS) is known as optimal since it finds the best match by exhaustively searching between frames. The fast Diamond Search algorithm reduces significantly the ME complexity while keeping the video quality near FS performance. By exploring the maximum inherent parallelism of FS and DS and the available parallel processing capability of GPUs, this work presents an efficient method to map out these algorithms onto GPU considering the CUDA architecture (Compute Unified Device Architecture). For performance evaluation, the CUDA solutions are compared with respective multi-core (using OpenMP library) and distributed (using MPI as supporting infrastructure) versions. All versions were evaluated in different video resolutions and the results were compared with algorithms found in the literature. The proposed implementations onto GPU present significant increase, in terms of performance, in relation with the H.264/AVC encoder reference software and, moreover, present expressive gains in relation with multi-core, distributed versions and GPGPU alternatives proposed in literature.
Identifer | oai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/61975 |
Date | January 2012 |
Creators | Monteiro, Eduarda Rodrigues |
Contributors | Bampi, Sergio |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds