Return to search

Diatom Alchemy

This work resulted in the development of multiple distinct and novel methods of cheaply producing large numbers of biologically derived, complex, 3-dimensional microstructures in a multitude of possible compositions. The biologically derived structures employed in this work were diatoms, a type of single celled algae, which grow complex silica shells in species-specific shapes. Due to the wide diversity of naturally occurring diatom shapes (on the order of 105), and the flexibility in tailoring chemical compositions using the methods developed here, real potential exists for cheaply mass-producing industrially relevant quantities of controlled shape and size 3-d particles for the first time. The central theme of this research is the use of diatoms as a transient scaffold onto which a coating is applied. After curing the coating, and in some cases firing the coating to form ceramic, the diatom can be selectively etched away leaving a free standing replica of the original structure with the salient features of the pre-form intact, but now composed of a completely different material. Using this concept, specific methods were developed to suit various precursors. Dip coating techniques were used to create epoxy diatoms, and silicon carbide diatoms. The Sol-Gel method was used to synthesize zirconia diatoms in both the tetragonal and monoclinic phases. A multi step method was developed in which previously synthesized epoxy diatoms were used as a template for deposition of a silicon carbide precursor and then heat treated to produce a silicon carbide/carbon multi-component ceramic. A hydrothermal reaction was also developed to convert Titania diatoms to barium titanate by reaction with barium hydroxide. Finally, the device potential of diatom-derived structures was conclusively demonstrated by constructing a gas sensor from a single Titania diatom. Under suitable conditions, the sensor was found to have the fastest response and recovery time of any sensor of this type reported in the literature. Furthermore, this work has laid the groundwork for the synthesis of many other tailored compositions of diatoms, and provided several compositions for device creation.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7611
Date03 December 2004
CreatorsGaddis, Christopher Stephen
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeThesis
Format8939908 bytes, application/pdf

Page generated in 0.0112 seconds