Return to search

Energy efficiency of smelting of scrap aluminium in HPDC facilities : Available and upcoming technologies

The aluminium industry is anticipated to witness a surge in demand, with projectionsof a two to three-fold increase by 2050. Meeting environmental objectives andaddressing the growing emphasis on sustainability from both the industry andconsumers seeking eco-friendly products present significant challenges. Energyefficiency will be crucial in addressing these concerns. While primary aluminiumproduction consumes the majority of energy in the industry, the die-casting sector, asan energy-intensive segment, offers opportunities for enhancing energy efficiency. Inhousealuminium smelting in high-pressure die-casting (HPDC) foundries, primarilyemploying gas-fired shaft furnaces with preheating for improved energy efficiency, isa significant energy user.This research examines energy efficiency in High-Pressure Die Casting (HPDC)foundries, particularly in-house aluminium smelting. Utilizing literature reviewsand expert interviews, the study reveals efficient technologies, drivers and barriersto energy efficiency, and the importance of sustainability. The current absence ofwell-defined Best Available Techniques (BAT) and the absence of validated claims bymanufacturers in the HPDC sector emphasize the urgent need for extensive researchand empirical verification.The results from this study show that using gas-fired shaft furnaces is the optimalchoice for the next decade, with waste heat recovery as the primary energy efficiencymethod, supplemented by the implementation of energy management systems andstrategies. Induction furnaces may emerge as a viable future technology, contingenton significant electricity network expansion and low energy prices.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-195411
Date January 2023
CreatorsRacsi, Bogdan Radu
PublisherLinköpings universitet, Energisystem
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds