Advances of magnetic resonance imaging (MRI) techniques enable visualguidance to identify the anatomical target of interest during the image guidedintervention(IGI). Non-rigid image registration is one of the crucial techniques,aligning the target tissue with the MRI preoperative image volumes. As thegrowing demand for the real-time interaction in IGI, time used for intraoperativeregistration is increasingly important. This work implements 3D diffeomorphicdemons algorithm on Nvidia GeForce GTX 1070 GPU in C++ based on CUDA8.0.61 programming environment, using which the average registration time hasaccelerated to 5s. We have also extensively evaluated GPU accelerated 3D diffeomorphicregistration against both CPU implementation and Matlab codes, and theresults show that GPU implementation performs a much better algorithm efficiency.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-211135 |
Date | January 2017 |
Creators | Qu, An |
Publisher | KTH, Skolan för teknik och hälsa (STH) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-STH ; 2017:71 |
Page generated in 0.002 seconds