Return to search

Approximation of integro-partial differential equations of hyperbolic type

A state space model is developed for a class of integro-partial differential equations of hyperbolic type which arise in viscoelasticity. An approximation scheme is developed based on a spline approximation in the spatial variable and an averaging approximation in the de1ay variable. Techniques from linear semigroup theory are used to discuss the well-posedness of the state space model and the convergence properties of the approximation scheme. We give numerical results for a sample problem to illustrate some properties of the approximation scheme. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/74733
Date January 1986
CreatorsFabiano, Richard H.
ContributorsMathematics, Burns, John A., Herdman, Terry L., Wheeler, Robert, Cliff, Eugene M., Beattie, Christopher A.
PublisherVirginia Polytechnic Institute and State University
Source SetsVirginia Tech Theses and Dissertation
Languageen_US
Detected LanguageEnglish
TypeDissertation, Text
Formativ, 89 leaves, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 14979811

Page generated in 0.002 seconds