Consequences and applications of the Fock space representation theorem Daniela Novotn'a Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University Abstract In this thesis, we deal with selected applications of the Fock space rep- resentation theorem. One of the most important is the covariance identity, which can yield in an estimation of the correlation function of a point process having Papangelou conditional intensity. We used this result to generalise some asymptotic results for Gibbs particle processes. Namely, in combina- tion with Stein's method, we derived bounds for the Wasserstein distance between the standard normal distribution and the distribution of an innova- tion of a Gibbs particle process. As an application, we present a central limit theorem for a functional of a Gibbs segment process with pair potential.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:357227 |
Date | January 2017 |
Creators | Novotná, Daniela |
Contributors | Beneš, Viktor, Rataj, Jan |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds