One of the major problems concerning the production of food crops is the controlling of plant diseases to maintain the high quality and yield. Wheat diseases are caused by parasitic bacteria, fungi and viruses that are a major hazard in wheat production. Therefore, understanding of any resistance mechanism is prerequisite for the successful utilization of wheat crop species in modern agriculture. The phenomenon of induced resistance by fungi, bacteria, microbial elicitors and chemicals has been investigated widely and resulted in many discoveries that conclude a general realization that the disease resistance signaling pathway in plants shares a number of common elements with those leading to innate immunity but a few of them have been characterized at the molecular level yet. Therefore our goal in this study is to identify genes activated or repressed after treatment of wheat plants with biological elicitor fungus, Trichoderma harzianum, and chemical inducers, benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) and ß / -aminobutyric acid (BABA).
mRNA differential display technique, which is a powerful tool to identify those genes that are differentially expressed between the two cell types has been extensively used in this study. The variety ' / Avocet S' / is used to identify putative genes activated or repressed after treatment of wheat plants with biological elicitor fungus, Trichoderma harzianum, and chemical inducers, BTH and BABA comparing to untreated ' / Avocet S' / wheat plants. The differentially expressed cDNA bands were cloned and sequenced. Nucleotide sequences of differentially expressed cDNA bands were searched in the Genbank. Sequence alignments between the fragments that represent a certain gene were also searched in ClustalX-1.81 computer programs. The sequences of the differentially expressed fragments were also confirmed by real time PCR that verify the gene expression differences observed between the biologically or chemically treated and untreated plants as a result of defense induction. The confirmed genes were found to be involved directly or indirectly in the induced disease resistance. These genes are important in terms of understanding the mechanism of systemic acquired resistance (SAR) signalling defense and helpful in producing transgenic wheat.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12607811/index.pdf |
Date | 01 October 2006 |
Creators | Al-asbahi, Adnan Ali |
Contributors | Akkaya, Mahinur Sezner |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | Ph.D. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.002 seconds