The structural adhesives widely used in structural strengthening applications are thermoset ambient cure adhesive polymers. At ambient temperatures, these polymers are in a relatively hard and inflexible state. At higher temperatures, the material becomes soft and flexible. The region where the molecular mobility changes dramatically is known as the glass transition temperature Tg and often is presented as a single value. Epoxy polymers exhibit a significant reduction in mechanical properties near glass transition temperature Tg when they are exposed to elevated temperatures. Glass transition temperature Tg is used to characterise the change in epoxy adhesive properties with changing temperature. The mechanical properties of epoxies tend to improve with curing temperature. This is because the crosslink density between the adhesive molecular structures increases during the curing process consequently the Tg improves. The aims of this work are first to demonstrate the importance of curing temperature. Second, to investigate the influence of glass transition temperature !! improvement on the performance of EB-FRP strengthened steel structures in flexure at ambient and elevated temperatures. Third, to compare analytical results with experimental results from the flexure tests results. Finally, to compare the current design guideline recommendations with the flexure tests results. The most commonly used methods to evaluate Tg Dynamic Mechanical Analysis (DMA) and Differential Scanning Calorimetry (DSC) were used to study Tg. Two off-shelf structural adhesives were investigated to understand their property variation with temperature. Epoxy coupons were cured at different elevated temperature and humidity environments up to 28 days. A combination of two extreme relative humidity of 0 and 100% and variable curing temperatures between 15 to 80°C were considered. From a test matrix of 300 DMA and over 250 DSC coupons these conclusions were drawn. First, ambient cured thermosets have a linear relationship between Tg and curing temperature, but Tg is reduced if a certain temperature is reached. Second, a fully cured adhesive requires heating treatment. Without a curing regime, designed Tg may never be achieved. Finally, curing time is crucial at the low curing temperatures while it is less significant at the higher curing temperature. The results of Tg investigation were used to select appropriate curing temperature that the adhesives resistance to temperature can be maximised without damaging the mechanical properties. The study helps designs to understand and assess the behaviour of these two adhesives when they are exposed to extreme temperatures. The study increases the awareness that a fully cured adhesive may never be achieved at ambient or low temperatures. It is important to find the mechanical properties and Tg when the coupons are exposed to the same curing temperature. To investigate the influence of glass transition temperature Tg improvement on the performance of EB-FRP strengthened steel structures in flexure at ambient and elevated temperature, nine three metre length beams were designed to behave as a concrete-steel composite bridge deck. The beams were tested in four-point bending. Lap shear, DMA test, and pull-off adhesion samples were prepared and cured at the same conditions and tested at ambient temperature. Six beams were tested under only mechanically loading at ambient temperature, including the control specimen. Five beams were tested at ambient temperature to show the effects of adhesive curing on FRP strengthened sections. A significant increase of load capacity of the adhesive joints was achieved due to the curing of the joints at elevated temperature. The failure occurred was in the same manner. An increase in the load capacity was observed with increasing curing temperature. An increase of approximately 25% was noticed in the ultimate load capacity of the specimens cured at 50°C compared to the specimens cured at 30°C. The load capacity of lap-shear specimens cured at 50°C was 28% higher than the specimens cured at 30°C. Three specimens were tested under mechanical and thermal loading. A bespoke thermal chamber was designed and fabricated to apply a controlled thermal loading. The beams were loaded mechanically up to 350kN, first. The temperature of the specimens was then increased at a rate of 0.8°C/min. The sustained load 350kN remained constant during the heating phase. Digital Image Correlation (DIC) technique was used to detect the slippage of the tip of the FRP plates. The only specimen cured at 30°C showed relatively poor performance compared to the two specimens cured at 50°C. The plate ends started to slip when the adhesive storage modulus from the DMA runs reduced approximately by 15 and 18% for the beams cured at 30 and 50°C respectively. Pull-off adhesion tests confirmed that adequate surface preparation of over 25 MPa was achieved The flexural model for the composite steel section represented to predicate load-deflection behaviour of the specimens using semi-experimental constitutive material law. The model successfully predicts the load-deflection behaviour of specimens, considering the strain hardening contribution. A bond stress analysis is also presented, which counts for the effect of FRP plate moment effect. The experimental and theoretical FRP plate slippage assuming only adhesive degradation with temperature are compared. The analytical bond models cannot predict the experimental failure because the linear elastic material properties were assumed and the failure was adhesion.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:743669 |
Date | January 2017 |
Creators | Othman, Daryan Jalal |
Contributors | Stratford, Timothy ; Bisby, Luke |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/29646 |
Page generated in 0.012 seconds