Return to search

An investigation into performance criteria for Fibre Bragg Grating sensors embedded in composite structures

M.Ing. (Mechanical Engineering) / The dissertation explores the applications and limitations of optic Fibre Bragg Grating (FBG) sensors for the purpose of structural health monitoring of high performance composite aerospace structures. The absence of a set of stringent performance criteria governing the form and function of a sensory system for embedded high performance applications highlights the major hurdle to be overcome before widespread acceptance of these technologies becomes apparent. The dissertation therefore develops through an extensive literature study a basic framework of performance criteria to be met by the sensory system upon which a prototype Structural Health Monitoring (SHM) system can be further developed. The resolution of the performance criteria into categories of mechanical and non-mechanical performance allows independent evaluation of factors that directly affect the performance of the sensor (in terms of strength, embeddability and load carrying ability) as well as its functional performance (in terms of orientation, spatial resolution and measurement philosophy). The literature study uses the non-mechanical performance limitations as a guideline for the selection of Fibre Bragg Grating (FBG) sensors as the sensory mechanism. The mechanical performance limitations of these specific sensors are then called into question and evaluated. Independent experiment campaigns are therefore developed to evaluate the mechanical and non-mechanical performance limitations such that a set of performance criteria can be developed governing the use of embedded sensory systems. Non mechanical performance with particular emphasis on sensor placement and orientation is investigated by simulating a fixed-free Euler Bernoulli cantilever using the Finite Element Method (FEM). The ability of the sensor to identify structural changes by measuring changes in modal response shows good results. Furthermore the inability of modal based monitoring to identify structural changes in the vicinity of modal inflection points is identified as an opportunity to locate structural deficiencies by monitoring multiple modes with known inflection point positions. The method also provides recommendations of sensor placement and orientation (close to the beam fixture and parallel with the neutral axis) such that the effectiveness of strain component measurements from all measurable modes is maximised. Mechanical performance of embedded FBG sensors is evaluated through an extensive fracture testing program which measures the fracture strains of fibre samples subjected to two-point bending. The fracture test program allows the quantification of the effects of the presence of the fibre’s protective polymer coating on fibre embeddability in composites, the consequent effects that the removal of this coating has on the mechanical performance and fracture behaviour of FBG sensors. These effects are qualified and mitigatory measures developed to improve the mechanical performance. A system of crack masking, hydrofluoric acid etching and fibre treatment is developed and statistical data analysis methods are employed and refined such that improvements in the mechanical properties of the FBG sensors can be quantified. An evaluation of the effectiveness of the proposed mechanical performance improvements yields good results culminating in the development of a comprehensive set of mechanical performance criteria to facilitate further development of a reliable SHM system.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:12338
Date17 September 2014
CreatorsRoberson, Craig Valentine
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis
RightsUniversity of Johannesburg

Page generated in 0.1295 seconds