Return to search

Multi-parametric MRI Study of Brain Insults (Traumatic Brain Injury and Brain Tumor) in Animal Models

abstract: The objective of this small animal pre-clinical research project was to study quantitatively the long-term micro- and macro- structural brain changes employing multiparametric MRI (Magnetic Resonance Imaging) techniques. Two separate projects make up the basis of this thesis. The first part focuses on obtaining prognostic information at early stages in the case of Traumatic Brain Injury (TBI) in rat animal model using imaging data acquired at 24-hours and 7-days post injury. The obtained parametric T2 and diffusion values from DTI (Diffusion Tensor Imaging) showed significant deviations in the signal intensities from the control and were potentially useful as an early indicator of the severity of post-traumatic injury damage. DTI was especially critical in distinguishing between the cytotoxic and vasogenic edema and in identification of injury regions resolving to normal control values by day-7. These results indicate the potential of quantitative MRI as a clinical marker in predicting prognosis following TBI. The second part of this thesis focuses on studying the effect of novel therapeutic strategies employing dendritic cell (DC) based vaccinations in mice glioma model. The treatment cohorts included comparing a single dose of Azacytidine drug vs. mice getting three doses of drug per week. Another cohort was used as an untreated control group. The MRI results did not show any significant changes in between the two treated cohorts with no reduction in tumor volumes compared to the control group. The future studies would be focused on issues regarding the optimal dose for the application of DC vaccine. Together, the quantitative MRI plays an important role in the prognosis and diagnosis of the above mentioned pathologies, providing essential information about the anatomical location, micro-structural tissue environment, lesion volume and treatment response. / Dissertation/Thesis / Masters Thesis Bioengineering 2014

Identiferoai:union.ndltd.org:asu.edu/item:25894
Date January 2014
ContributorsAnnaldas, Bharat Vivek (Author), Kodibagkar, Vikram (Advisor), Stabenfeldt, Sarah (Committee member), Bhardwaj, Ratan (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format70 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0019 seconds