Return to search

Determination of In-vivo Muscle Architecture : Comparison of Ultrasound and Diffusion Tensor Imaging and Analysis of Muscle Morphology in Post-stroke Patients / Bestämning av in vivo muskelarkitektur : Jämförelse av ultraljuds- och diffusionstensoravbildning och analys av muskelmorfologi hos post-stroke patienter

This study investigates the in-vivo architecture of muscles in the lower leg using 2D ultrasound (US) and 3D diffusion tensor imaging (DTI) techniques. The muscle architecture of the gastrocnemius, posterior soleus and tibialis anterior were compared using US and DTI imaging. DTI and US differed on average by 17% in fascicle length (FL), 20% in muscle thickness (tm), and 36% in pennation angles (PA).The study furthermore examined the muscle morphology after stroke by comparing the muscles of the affected side to the less-affected side of five hemiplegic post-stroke patients. The morphology of eight muscle compartments in both legs of the patients was measured using only DTI. An, on average, 14% smaller muscle volume in the effected side was found, as well as a difference of 15% in FL, 11% PA, and 17% in physiological cross-sectional area (PCSA). However, changes in FL, PA and PCSA were not only observed between sides but also differed among muscle compartments. The parameter values were in general in the range of human subjects but no conclusive differences between sides could be found based on the acquired data. In conclusion, DTI and US both yielded results of muscle architecture parameters within a physiologically range but can differ substantially between methods and cannot be compared directly.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-230795
Date January 2018
CreatorsKörting, Clara
PublisherKTH, Skolan för kemi, bioteknologi och hälsa (CBH)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2018:75

Page generated in 0.0106 seconds