The aim of this work was to establish a comprehensive processing pipeline of cervical spinal cord HARDI dMRI data and T2-weighted anatomical MRI images in high-resolution. In the research part we provide description of anatomical data processing, theoretical background of dMRI, description of current approaches to 3D anisotropic diffusion estimation as well as current imaging methods of spinal cord axonal bundles. As one of the first in the world, we are investigating multiple-direction diffusion models for human in-vivo spinal cord white matter minority bundles imaging. We designed our own processing pipeline utilizing Spinal Cord Toolbox (SCT), FSL, in-house developer scripts and TORQUE-based batch system for grid computation, tested on real data from cervical spinal cord area between segments C4-C6 from 26 healthy volunteers. Designed processing pipeline with one non-automatic step, works from pre-processing to parcelation of selected spinal cord structures based on co-registration with anatomical spinal cord template for 25 subjects. One person data includes motion artifacts for which the proces failed. There are visible waves in sagittal images of some subjects caused probably by blood-vessel pulsing. Local quantification metrics of spinal cord anatomy (fractional anisotropy – FA, fractional volumes of first – f1 and second – f2 direction of anisotropic diffusion) from different parts (white matter, gray matter, cortico-spinal tract) and from different population groups (men vs. women), were extracted from dMRI data. As we expected, FA maps show visible decreases in areas of gray matter. We also detected second diffusion dirrection in slices, where the spinal roots come out. In some areas, fractional volume of second diffusion direction reaches up to 40% of the total component of the dMRI signal. All mentioned parameters probability density functions for all mentioned groups are non-normal distributions. Between male and female groups there were no significant distribution differences for f1 and f2 volumes. The distribution of FA values between men and women is statistically different. Unfortunatelly, there is a significant inter-subject variability in results, which has much higher dispersion than differences between different group distributions. Despite the inter-subject variability, this work significantly extends the knowledge about data acquisiton capabilities and MRI and dMRI data from cervical spinal cord image processing. This work also lays down foundations for utilization of the imaging method in future and planned clinical research, where it will be possible to test the alteration of the spinal cord anatomy on the minor secondary bundles separately.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:316839 |
Date | January 2017 |
Creators | Zimolka, Jakub |
Contributors | Starčuk, Zenon, Labounek, René |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds