This thesis is concerned with the issue of extinction of populations composed of different types of individuals, and their behavior before extinction and in case of a very late extinction. We approach this question firstly from a strictly probabilistic viewpoint, and secondly from the standpoint of risk analysis related to the extinction of a particular model of population dynamics. In this context we propose several statistical tools.
The population size is modeled by a branching process, which is either a continuous-time multitype Bienaymé-Galton-Watson process (BGWc), or its continuous-state counterpart, the multitype Feller diffusion process. We are interested in different kinds of conditioning on non-extinction, and in the associated equilibrium states. These ways of conditioning have been widely studied in the monotype case. However the literature on multitype processes is much less extensive, and there is no systematic work establishing connections between the results for BGWc processes and those for Feller diffusion processes.
In the first part of this thesis, we investigate the behavior of the population before its extinction by conditioning the associated branching process X_t on non-extinction (X_t≠0), or more generally on non-extinction in a near future 0≤θ<∞ (X_{t+θ}≠0), and by letting t tend to infinity. We prove the result, new in the multitype framework and for θ>0, that this limit exists and is non-degenerate. This reflects a stationary behavior for the dynamics of the population conditioned on non-extinction, and provides a generalization of the so-called Yaglom limit, corresponding to the case θ=0. In a second step we study the behavior of the population in case of a very late extinction, obtained as the limit when θ tends to infinity of the process conditioned by X_{t+θ}≠0. The resulting conditioned process is a known object in the monotype case (sometimes referred to as Q-process), and has also been studied when X_t is a multitype Feller diffusion process. We investigate the not yet considered case where X_t is a multitype BGWc process and prove the existence of the associated Q-process. In addition, we examine its properties, including the asymptotic ones, and propose several interpretations of the process. Finally, we are interested in interchanging the limits in t and θ, as well as in the not yet studied commutativity of these limits with respect to the high-density-type relationship between BGWc processes and Feller processes. We prove an original and exhaustive list of all possible exchanges of limit (long-time limit in t, increasing delay of extinction θ, diffusion limit).
The second part of this work is devoted to the risk analysis related both to the extinction of a population and to its very late extinction. We consider a branching population model (arising notably in the epidemiological context) for which a parameter related to the first moments of the offspring distribution is unknown. We build several estimators adapted to different stages of evolution of the population (phase growth, decay phase, and decay phase when extinction is expected very late), and prove moreover their asymptotic properties (consistency, normality). In particular, we build a least squares estimator adapted to the Q-process, allowing a prediction of the population development in the case of a very late extinction. This would correspond to the best or to the worst-case scenario, depending on whether the population is threatened or invasive. These tools enable us to study the extinction phase of the Bovine Spongiform Encephalopathy epidemic in Great Britain, for which we estimate the infection parameter corresponding to a possible source of horizontal infection persisting after the removal in 1988 of the major route of infection (meat and bone meal). This allows us to predict the evolution of the spread of the disease, including the year of extinction, the number of future cases and the number of infected animals. In particular, we produce a very fine analysis of the evolution of the epidemic in the unlikely event of a very late extinction. / Diese Arbeit befasst sich mit der Frage des Aussterbens von Populationen verschiedener Typen von Individuen. Uns interessiert das Verhalten vor dem Aussterben sowie insbesondere im Falle eines sehr späten Aussterbens. Wir untersuchen diese Fragestellung zum einen von einer rein wahrscheinlichkeitstheoretischen Sicht und zum anderen vom Standpunkt der Risikoanalyse aus, welche im Zusammenhang mit dem Aussterben eines bestimmten Modells der Populationsdynamik steht. In diesem Kontext schlagen wir mehrere statistische Werkzeuge vor.
Die Populationsgröße wird entweder durch einen zeitkontinuierlichen mehrtyp-Bienaymé-Galton-Watson Verzweigungsprozess (BGWc) oder durch sein Analogon mit kontinuierlichem Zustandsraum, den Feller Diffusionsprozess, modelliert. Wir interessieren uns für die unterschiedlichen Arten auf Überleben zu bedingen sowie für die hierbei auftretenden Gleichgewichtszustände. Diese Bedingungen wurden bereits weitreichend im Falle eines einzelnen Typen studiert. Im Kontext von mehrtyp-Verzweigungsprozessen hingegen ist die Literatur weniger umfangreich und es gibt keine systematischen Arbeiten, welche die Ergebnisse von BGWc Prozessen mit denen der Feller Diffusionsprozesse verbinden. Wir versuchen hiermit diese Lücke zu schliessen.
Im ersten Teil dieser Arbeit untersuchen wir das Verhalten von Populationen vor ihrem Aussterben, indem wir das zeitasymptotysche Verhalten des auf Überleben bedingten zugehörigen Verzweigungsprozesses (X_t|X_t≠0)_t betrachten (oder allgemeiner auf Überleben in naher Zukunft 0≤θ<∞, (X_t|X_{t+θ}≠0)_t). Wir beweisen das Ergebnis, neuartig im mehrtypen Rahmen und für θ>0, dass dieser Grenzwert existiert und nicht-degeneriert ist. Dies spiegelt ein stationäres Verhalten für auf Überleben bedingte Bevölkerungsdynamiken wider und liefert eine Verallgemeinerung des sogenannten Yaglom Grenzwertes (welcher dem Fall θ=0 entspricht). In einem zweiten Schritt studieren wir das Verhalten der Populationen im Falle eines sehr späten Aussterbens, welches wir durch den Grenzübergang auf θ→∞ erhalten. Der resultierende Grenzwertprozess ist ein bekanntes Objekt im eintypen Fall (oftmals als Q-Prozess bezeichnet) und wurde ebenfalls im Fall von mehrtyp-Feller-Diffusionsprozessen studiert. Wir untersuchen den bisher nicht betrachteten Fall, in dem X_t ein mehrtyp-BGWc Prozess ist und beweisen die Existenz des zugehörigen Q-Prozesses. Darüber hinaus untersuchen wir seine Eigenschaften einschließlich der asymptotischen und weisen auf mehrere Auslegungen hin. Schließlich interessieren wir uns für die Austauschbarkeit der Grenzwerte in t und θ, und die Vertauschbarkeit dieser Grenzwerte in Bezug auf die Beziehung zwischen BGWc und Feller Prozessen. Wir beweisen die Durchführbarkeit aller möglichen Grenzwertvertauschungen (Langzeitverhalten, wachsende Aussterbeverzögerung, Diffusionslimit).
Der zweite Teil dieser Arbeit ist der Risikoanalyse in Bezug auf das Aussterben und das sehr späte Aussterben von Populationen gewidmet. Wir untersuchen ein Modell einer verzweigten Bevölkerung (welches vor allem im epidemiologischen Rahmen erscheint), für welche ein Parameter der Reproduktionsverteilung unbekannt ist. Wir konstruieren Schätzer, die an die jeweiligen Stufen der Evolution adaptiert sind (Wachstumsphase, Verfallphase sowie die Verfallphase, wenn das Aussterben sehr spät erwartet wird), und beweisen zudem deren asymptotische Eigenschaften (Konsistenz, Normalverteiltheit). Im Besonderen bauen wir einen für Q-Prozesse adaptierten kleinste-Quadrate-Schätzer, der eine Vorhersage der Bevölkerungsentwicklung im Fall eines sehr späten Aussterbens erlaubt. Dies entspricht dem Best- oder Worst-Case-Szenario, abhängig davon, ob die Bevölkerung bedroht oder invasiv ist. Diese Instrumente ermöglichen uns die Betrachtung der Aussterbensphase der Bovinen spongiformen Enzephalopathie Epidemie in Großbritannien. Wir schätzen den Infektionsparameter in Bezug auf mögliche bestehende Quellen der horizontalen Infektion nach der Beseitigung des primären Infektionsweges (Tiermehl) im Jahr 1988. Dies ermöglicht uns eine Vorhersage des Verlaufes der Krankheit inklusive des Jahres des Aussterbens, der Anzahl von zukünftigen Fällen sowie der Anzahl infizierter Tiere. Insbesondere ermöglicht es uns die Erstellung einer sehr detaillierten Analyse des Epidemieverlaufs im unwahrscheinlichen Fall eines sehr späten Aussterbens.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:4530 |
Date | January 2010 |
Creators | Pénisson, Sophie |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Page generated in 0.0035 seconds