The overall aim of this thesis was to validate diffusive samplers for measurements of nitrogen dioxide (NO2) and nitrogen oxides (NOx). The Willems badge was validated for NO2 measurements both in laboratory tests and in field tests (Paper I-II). The sampling rate was 40.0 mL/min for ambient air concentrations and 46.0 mL/min for higher concentrations. No effects of different factors on sampling rate were found except for a reduced sampling rate at low wind velocity. The results of the laboratory validation were confirmed in field tests in ambient air and with personal sampling. The correlation between diffusive samplers and the reference monitor was good for ambient measurements. In conclusion, the Willems badge performs well at wind velocities down to 0.3 m/s, and this makes it suitable for personal sampling but less suitable for measurements in indoor air where the wind velocity is lower. Paper III reports about the field validation of the Ogawa diffusive samplers. Absolute humidity and temperature were found to have the strongest effect on sampling rate with lower uptake rates at low absolute humidity or temperature. The sampling rates above 0 °C were 8.6 mL/min for NO2 and 9.9 mL/min for NOx. NO2 and NOx concentrations that were determined using the manufacturer’s protocol were either underestimated or overestimated. The agreement between concentrations measured by the Ogawa sampler and the reference monitor was improved when field-determined sampling rates were used to calculate concentrations. Paper IV is based on a study with the aim of assessing the exposure of the Swedish general population to NO2 and some carcinogenic substances. The surveys were performed in one of five Swedish cities every year. In each survey, personal measurements of NO2 and some carcinogenic substances were conducted on 40 randomly selected individuals. In the study presented in this thesis, the NO2 part of the study is in focus and results were available for eight surveys conducted across the five cities. The estimated arithmetic mean concentration for the general Swedish population was 14.1 μg/m3. The exposure level for NO2 was higher for smokers compared with non-smokers, and the NO2 exposure levels were higher for people who had gas stoves at home or who were exposed at their workplace. The exposure was lower for those who had oil heating in their houses.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-95757 |
Date | January 2014 |
Creators | Hagenbjörk-Gustafsson, Annika |
Publisher | Umeå universitet, Yrkes- och miljömedicin, Umeå : Umeå universitet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Umeå University medical dissertations, 0346-6612 ; 1685 |
Page generated in 0.0025 seconds