Return to search

Nanosim: A Simulation Framework For Nanoscale Molecular Communication Networks

A number of nanomachines that cooperatively communicate and share information in order to achieve specific tasks is envisioned as a nanonetwork. Due to size and capabilities of nanomachines, the traditional communication paradigms cannot be used for nanonetworks in which network nodes may be composed of just several atoms or molecules and scale on the orders of few nanometers. Instead, the molecular communication is a promising solution approach for nanoscale communication paradigm. However, molecular communication must be thoroughly investigated to realize the nanoscale communication and nanonetworks for many envisioned applications such as nanoscale body area networks, nanoscale molecular computers. In this thesis, a simulation framework (NanoSim) for nanoscale molecular communication networks is presented. The objective of the framework is to provide a simulation experimental tool in order to create a better understanding of nanonetworks and facilitate the development of new communication techniques and validation of theoretical results. The NanoSim framework is built on top of core components of widely used network simulator (ns-2). It incorporates the simulation modules for various nanoscale communication paradigms based on diffusive molecular, motor-based and gap junction-based molecular communication channels. The details of NanoSim are discussed and some functional scenarios are defined to validate NanoSim. In addition to this, the numerical analyses of these functional scenarios and the experimental results for them are presented. The validation of NanoSim is done by comparing these experimental and numerical results.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12611882/index.pdf
Date01 June 2010
CreatorsGul, Ertan
ContributorsOzgur, Akan Baris
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0018 seconds