Return to search

Computational approach to the experimental determination of diffusion coefficients for oxygen and nitrogen in hydraulic fluids using the pressure-decay method

In the presented paper, the applicability of pressure-decay methods to determine the diffusivities of gases in hydraulic fluids is analysed. First, the method is described in detail and compared to other measurement methods. Secondly, the thermodynamics and the mass transfer process of the system are studied. This results in four different thermodynamic models of the gaseous phase in combination with two diffusion models. Thirdly, the influence of the models on the pressure-decay method is evaluated computationally by examining the diffusion process of air in water as all system parameters are available from literature. It is shown that ordinary pressure-decay methods are not applicable to gas mixtures like air and therefore a new method for calculating the diffusivities is suggested.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:71099
Date25 June 2020
CreatorsRambaks, Andris, Kratschun, Filipp, Flake, Carsten, Messirek, Maren, Schmitz, Katharina, Murrenhoff, Hubertus
ContributorsDresdner Verein zur Förderung der Fluidtechnik e. V. Dresden
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.25368/2020.6, urn:nbn:de:bsz:14-qucosa2-709160, qucosa:70916

Page generated in 0.0018 seconds