Neste trabalho, examinamos em detalhe resultados recentes apresentados em [Zingano, 1999], [Zingano, 2004], [Zingano, 1996a] [T. Hagstrom, 2004] sobre o comportamento de soluções para equações (escalares) de ad vecção-difusão nãolineares, da forma Ut + div(f(u)) = div(A(u)V'u), x E ]Rn, t > O correspondentes a estados iniciais u(., O) E LI(]Rn) n DXJ(JRn).Aqui, A(u) E ]Rn é uniformemente positiva definida para todos os valores de u em questão, e f( u) = (f1(u),..., fn(u)) corresponde ao fluxo advectivo, com A, f suaves. Entre os vários resultados, tem-se em particular os limites assintóticos . !!. (I_l) Iml (47rÀ)~ 11mt2 p Ilu(" t)IILP(JRn) = (4 À)!!. - , t-++oo 7r 2 P para cada 1 :::;P :::;00, uniformemente em p, bem como lim t~(l-i) Ilu(" t) - u(',t)IILP(JRn) = O, t-++oo 1:::; p:::; 00 para duas soluçõesu(', t), u(', t) quaisquer correspondentesa estados iniciais u(', O),u(', O)E LI (]Rn) n Loo(]Rn) com a mesma massa, isto é, r u(x, O)dx = r u(x,O)dx JJRn JJRn Outra propriedade fundamental, válida em dimensão n ;:::2, é lim t%(l-~) Ilu(" t) - v(', t) IILP(JRn) = O t-++oo para cada 1 :::;p :::; 00, se v(', t) é solução da equação de advecção-difusão linear Vt + f (O) . V'v= div(A(O)V'v), x E ]Rn, t > O, com u(', O),v(', O) E U(]Rn) n Loo(JRn) tendo a mesma massa. Outros resultados de interesse são também discutidos.
Identifer | oai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/6157 |
Date | January 2005 |
Creators | Moro, Graciela |
Contributors | Zingano, Paulo Ricardo de Avila |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds