High-temperature reactors make use of tri-structural coated fuel particles as basic fuel components. These TRISO particles consist of fissionable uranium dioxide fuel kernels, about 0.5 mm in diameter, with each kernel individually encased in four distinct coating layers, starting with a porous carbon buffer, then an inner pyrolytic carbon (IPyC) layer, followed by a layer of ceramic silicon carbide (SiC) and finally an outer pyrolytic carbon layer (OPyC). Collectively, the coating layers provide the primary barrier that prevents release of fission products generated during burn up in the UO2 fuel kernel. It is crucial to understand how the fission products contained within the fuel interact with the coating layers and how they are distributed within the fuel. The first step commonly performed to obtain the information on distribution is removal of the coating layers. The purpose of this study was to investigate the possible use of wet chemical etching techniques with the aim of removing the coating layers of ZrO2 coated fuel particles in a controlled way and to establish experimental parameters for controlled dissolution of irradiated fuel particles. Stepwise dissolution of coated fuel particle coating layers, containing zirconia kernels has been investigated by chemical etching experiments with acidic solutions of different mixtures. The heating methods used include heating by conventional methods, hot plates and a muffle furnace, a reflux-heating system and microwave-assisted digestion. The etching mixtures were prepared from a number of oxidizing acids and other dehydrating agents. The capability of each reagent to etch the layer completely and in a controlled manner was examined. On etching the first layer, the OPyC, the reflux heating method gave the best results in removing the layer, its advantage being that the reaction can be carried out at temperatures of about 130 ºC for a long time without the loss of the acid. The experimental results demonstrated that a mixture composed of equal amounts of concentrated nitric and sulfuric acid mixed with chromium trioxide dissolves the OPyC layer completely. The most favourable experimental conditions for removal of OPyC from a single coated fuel particle were identified and found to depend on the etching solution composition and etching temperature. Light microscopy yielded first-hand information on the surface features of the samples. It allowed fast comparison of etched and untreated sample features. The outer surface of particles prior to chemical etching of the outer pyrolytic carbon layer appeared black in colour with an even surface compared to the etched surfaces which appeared to have an uneven metallic grey, shiny texture. The scanning electron microscope (SEM) examination of the chemically treated outer carbon layer samples gave information on the microstructure and it demonstrated that the outer pyrolytic carbon layer could be readily removed using a solution of HNO3/H2SO4/CrO3, leaving the exposed SiC layer. Complete removal of the layer was confirmed by energy dispersive X-ray spectroscopic (EDS) analysis of the particle surface. For etching the second layer, the silicon carbide layer, microwave-assisted chemical etching was the only heating technique found to be useful. However, experimental results demonstrated that this method has limited ability to digest the sample completely. Also common chemical etchants were found to be ineffective for dissolving this layer. Only fluoride containing substances showed the potential to etch the layer. The results show that a mixture consisting of equal amounts of concentrated hydrofluoric and nitric acid under microwave heating at 200 ºC yielded partial removal of the coating and localized attack of the underlying coating layers. The SEM analyses at different intervals of etching showed: partial removal of the layer, attack of the underlying layers and, in some instances, that attack started at grain boundaries and progressed to the intra-granular features. The SEM results provide evidence that etching of the silicon carbide layer is strongly influenced by its microstructure. From these findings, it is concluded that etching of the silicon carbide under the investigated experimental conditions yields undesirable results and that it does not provide complete removal of the layer. This method has the potential to etch the layer to some extent but has limitations. Copyright / Dissertation (MSc)--University of Pretoria, 2013. / Chemical Engineering / unrestricted
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:up/oai:repository.up.ac.za:2263/29908 |
Date | 28 November 2012 |
Creators | Skolo, Kholiswa Patricia |
Contributors | Prof P L Crouse, kholiswa.skolo@necsa.co.za |
Source Sets | South African National ETD Portal |
Detected Language | English |
Type | Dissertation |
Rights | © 2012, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria |
Page generated in 0.0024 seconds