The digital footprints collected from the prevailing sensing systems provide novel ways to perceive an individual's behaviors. Furthermore, large collections of digital footprints from communities bring novel understandings of human behaviors from the community perspective (community behaviors), such as investigating their characteristics and learning the hidden human intelligence. The perception of human behaviors from the sensing digital footprints enables novel applications for the sensing systems. Bases on the digital footprints collected with accelerometer-embedded mobile phones and GPS equipped taxis, in this dissertation we present our work in recognizing individual behaviors, capturing community behaviors and demonstrating the novel services enabled. With the GPS footprints of a taxi, we summarize the individual anomalous passenger delivery behaviors and improve the recognition efficiency of the existing method iBOAT by introducing an inverted index mechanism. Besides, based on the observations in real life, we propose a method to detect the work-shifting events of an individual taxi. With real-life large-scale GPS traces of thousands of taxis, we investigate the anomalous passenger delivery behaviors and work shifting behaviors from the community perspective and exploit taxi serving strategies. We find that most anomaly behaviors are intentional detours and high detour inclination won't make taxis the top players. And the spatial-temporal distribution of work shifting events in the taxi community reveals their influences. While exploiting taxi serving strategies, we propose a novel method to find the initial intentions in passenger finding. Furthermore, we present a smart taxi system as an example to demonstrate the novel applications that are enabled by the perceived individual and community behaviors
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00814604 |
Date | 12 December 2012 |
Creators | Sun, Lin |
Publisher | Institut National des Télécommunications |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0016 seconds