Return to search

Non-Dimensional Modeling of the Effects of Weld Parameters on Peak Temperature and Cooling Rate in Friction Stir Welding

Methods for predicting weld properties based on welding parameters are needed in friction stir welding (FSW). FSW is a joining process in which the resulting properties depend on the thermal cycle of the weld. Buckingham's Pi theorem and heat transfer analysis was used to identify dimensionless parameters relevant to the FSW process. Experimental data from Al 7075 and HSLA-65 on five different backing plate materials and a wide range of travel speeds and weld powers was used to create a dimensionless, empirical model relating critical weld parameters to the peak temperature rise and cooling rate of the weld. The models created have R-squared values greater than 0.99 for both dimensionless peak temperature rise and cooling rate correlations. The model can be used to identify weld parameters needed to produce a desired peak temperature rise or cooling rate. The model can also be used to explore the relative effects of welding parameters on the weld thermal response.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-7710
Date01 April 2017
CreatorsStringham, Bryan Jay
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Theses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0018 seconds