Return to search

Simulation and optimisation of spiral-wound reverse osmosis process for the removal of N-nitrosamine from wastewater

Yes / N-nitrosamine in wastewater treatment processes can contribute to several public health impacts including human carcinogens even at very low concentration. In this work, spiral-wound reverse osmosis (SWRO) process is used to remove N-nitrosamine compounds from wastewater. Effects of operating parameters of the SWRO process on the removal of N-nitrosamine, total water recovery, and specific energy consumption for a SWRO configurations are evaluated via simulation and optimisation. For this purpose, the one-dimensional distributed model developed earlier by the authors is modified by including different mass transfer coefficient correlation, temperature dependent water and solute permeability correlations and energy equations. The model is first validated by estimating a new set of model parameters using eight set of experimental data from the literature and is then used to simulate the process with and without energy recovery device to facilitate deeper insight of the effect of operating conditions on the process performance. The model is then embedded within an optimisation framework and optimisation problems to maximise N-nitrosamine rejections and to minimise specific energy consumption are formulated and solved while the operating conditions are optimized simultaneously.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/15360
Date19 March 2018
CreatorsAl-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Accepted Manuscript
Rights© 2018 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

Page generated in 0.015 seconds