Made available in DSpace on 2017-07-21T14:19:33Z (GMT). No. of bitstreams: 1
Juscelino Izidoro Oliveira.pdf: 622255 bytes, checksum: 54447b380bca4ea8e2360060669d5cff (MD5)
Previous issue date: 2012-07-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Multivariate data analysis allows the researcher to verify the interaction among a lot of attributes that can influence the behavior of a response variable. That analysis uses models
that can be induced from experimental data set. An important issue in the induction of multivariate regressors and classifers is the sample size, because this determines the reliability of the model for tasks of regression or classification of the response variable. This work approachs the sample size issue through the Theory of Probably Approximately Correct Learning, that comes from problems about machine learning for induction of models. Given the importance of agricultural modelling, this work shows two procedures to select variables. Variable Selection by Principal Component Analysis is an unsupervised procedure and allows the researcher to select the most relevant variables from the agricultural data by considering the variation in the data. Variable Selection by Supervised Principal Component Analysis is a supervised procedure and allows the researcher to perform the same process as in the previous procedure, but concentrating the focus of the selection over the variables with more influence in the behavior of the response variable. Both procedures allow the sample complexity informations to be explored in
variable selection process. Those procedures were tested in five experiments, showing that the supervised procedure has allowed to induce models that produced better scores, by
mean, than that models induced over variables selected by unsupervised procedure. Those experiments also allowed to verify that the variables selected by the unsupervised and supervised procedure showed reduced indices of multicolinearity. / A análise multivariada de dados permite verificar a interação de vários atributos que podem influenciar o comportamento de uma variável de resposta. Tal análise utiliza modelos
que podem ser induzidos de conjuntos de dados experimentais. Um fator importante na indução de regressores e classificadores multivariados é o tamanho da amostra, pois, esta determina a contabilidade do modelo quando há a necessidade de se regredir ou classificar a variável de resposta. Este trabalho aborda a questão do tamanho da amostra por meio da Teoria do Aprendizado Provavelmente Aproximadamente Correto, oriundo de problemas sobre o aprendizado de máquina para a indução de modelos. Dada a importância da modelagem agrícola, este trabalho apresenta dois procedimentos para a seleção de variáveis. O procedimento de Seleção de Variáveis por Análise de Componentes Principais, que não é supervisionado e permite ao pesquisador de agricultura selecionar as variáveis mais relevantes de um conjunto de dados agrícolas considerando a variação contida nos dados. O procedimento de Seleção de Variáveis por Análise de Componentes Principais
Supervisionado, que é supervisionado e permite realizar o mesmo processo do primeiro procedimento, mas concentrando-se apenas nas variáveis que possuem maior infuência no
comportamento da variável de resposta. Ambos permitem que informações a respeito da complexidade da amostra sejam exploradas na seleção de variáveis. Os dois procedimentos
foram avaliados em cinco experimentos, mostrando que o procedimento supervisionado permitiu, em média, induzir modelos que produziram melhores pontuações do que aqueles
modelos gerados sobre as variáveis selecionadas pelo procedimento não supervisionado. Os experimentos também permitiram verificar que as variáveis selecionadas por ambos os procedimentos apresentavam índices reduzidos de multicolinaridade..
Identifer | oai:union.ndltd.org:IBICT/oai:tede2.uepg.br:prefix/152 |
Date | 30 July 2012 |
Creators | Jr., Juscelino Izidoro de Oliveira |
Contributors | Rocha, Jose Carlos Ferreira da, Mathias, Ivo Mario, Kikuti, Daniel |
Publisher | UNIVERSIDADE ESTADUAL DE PONTA GROSSA, Programa de Pós Graduação Computação Aplicada, UEPG, BR, Computação para Tecnologias em Agricultura |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UEPG, instname:Universidade Estadual de Ponta Grossa, instacron:UEPG |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds