Return to search

MULTIFACTOR DIMENSIONALITY REDUCTION WITH P RISK SCORES PER PERSON

After reviewing Multifactor Dimensionality Reduction(MDR) and its extensions, an approach to obtain P(larger than 1) risk scores is proposed to predict the continuous outcome for each subject. We study the mean square error(MSE) of dimensionality reduced models fitted with sets of 2 risk scores and investigate the MSE for several special cases of the covariance matrix. A methodology is proposed to select a best set of P risk scores when P is specified a priori. Simulation studies based on true models of different dimensions(larger than 3) demonstrate that the selected set of P(larger than 1) risk scores outperforms the single aggregated risk score generated in AQMDR and illustrate that our methodology can determine a best set of P risk scores effectively. With different assumptions on the dimension of the true model, we considered the preferable set of risk scores from the best set of two risk scores and the best set of three risk scores. Further, we present a methodology to access a set of P risk scores when P is not given a priori. The expressions of asymptotic estimated mean square error of prediction(MSPE) are derived for a 1-dimensional model and 2-dimensional model. In the last main chapter, we apply the methodology of selecting a best set of risk scores where P has been specified a priori to Alzheimer’s Disease data and achieve a set of 2 risk scores and a set of three risk scores for each subject to predict measurements on biomarkers that are crucially involved in Alzheimer’s Disease.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:statistics_etds-1040
Date01 January 2018
CreatorsLi, Ye
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Statistics

Page generated in 0.0017 seconds