The Schrödinger equation ... is considered. The solution of this equation is reduced to the problem of finding the eigenvectors of an infinite matrix. The infinite matrix is truncated to a finite matrix. The approximation due to the truncation is carefully studied. The band structure of the eigenvalues is shown. The eigenvectors of the multiwells potential are presented. The solutions of Schrödinger equation are calculated. The results are very sensitive to the value of the parameter y. Localized solutions, in the case that the energy is slightly greater than the maximum value of the potential, are presented. Wigner and Weyl functions, corresponding to the solutions of Schrödinger equation, are also studied. It is also shown that they are very sensitive to the value of the parameter y.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:533590 |
Date | January 2010 |
Creators | Mugassabi, Souad |
Contributors | Vourdas, Apostolos |
Publisher | University of Bradford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10454/4895 |
Page generated in 0.0127 seconds