Aging is a degenerative process characterized by a decline in physiological functions and cellular activities. Environmental and pharmacological interventions affecting longevity pathways have been extensively studied in model organisms. This study investigated the effect of chronic mild intermittent hypoxia (4 mg O2/L) or mild mitochondrial uncoupling with three doses of 0 (control), 0.1, 1, and 5 μM of 2,4-Dinitrophenol (DNP), on life history and gene expression in four clones of Daphnia magna. Interestingly, clones from intermittent ponds displayed better tolerance to hypoxia and DNP. Although neither treatments extended longevity, hypoxia increased fecundity and body size, and decreased food consumption and respiration rate. We uncovered 12 candidate genes that were differentially expressed in hypoxia-tolerant and sensitive clones in response to hypoxia. Unexpectedly, DNP increased fecundity and mitochondrial membrane potential without affecting food intake. This work opens up an opportunity for genomic determination of the potentially important phenotypes in a model organism.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5396 |
Date | 01 May 2021 |
Creators | Ekwudo, Millicent Nkiruka |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0024 seconds