7,8-Linoleate diol synthase (7,8-LDS) of the take-all pathogen of wheat, Gaeumannomyces graminis, converts linoleic acid to 8R-hydroperoxyoctadecadienoic acid (8-HPODE) by 8-dioxygenase activity (8-DOX), and further isomerizes the hydroperoxide to 7S,8S-dihydroxyoctadecadienoic acid (7,8-DiHODE) by hydroperoxide isomerase activity. Sequence alignment showed homology to prostaglandin H synthase (PGHS), and both enzymes share structural and catalytic properties. The 8-DOX of 7,8-LDS was successfully expressed in Pichia pastoris and in insect cells (Sf21). Site-directed mutagenesis confirmed His379 as the proximal heme ligand and Tyr376 as a residue, which forms a tyrosyl radical and initiates catalysis. Furthermore, mutagenesis suggested His203 could be the proposed distal histidine, and Tyr329 of catalytic relevance for substrate positioning at the active site. Aspergilli are ubiquitous environmental fungi. Some species, in particular Aspergillus fumigatus, are responsible for invasive aspergillosis, which is a life-threatening disease for immunocompromised patients. A. fumigatus and A. nidulans metabolized linoleic acid to 8R-HPODE, 10R-hydroperoxyoctadecadienoic acid (10R-HPODE), 5S,8R-dihydroxyoctadecadienoic acid, and 8R,11S-dihydroxyoctadecadienoic acid. When the genomes of certain Aspergilli strains were published, several species showed at least three homologous genes (ppoA, ppoB, ppoC- psi producing oxygenases) to 7,8-LDS and PGHS. Gene deletion identified PpoA as an enzyme with 8-DOX and 5,8-hydroperoxide isomerase activities, designated 5,8-LDS in homology to 7,8-LDS. In the same way, PpoC was identified as a 10-dioxygenase (10-DOX), which converts linoleic acid to 10R-HPODE. 10-DOX differs from LDS, since it dioxygenates linoleic acid at C-10, after hydrogen abstraction at C-8 and double bond migration. 10-DOX was cloned and expressed in insect cells. Leu384 and Val388 were found to be critical for dioxygenation at C-10. Mutation to the homologous residues of 5,8- and 7,8-LDS (Leu384Val, Val388Leu) increased oxygen insertion at C-8. LDS and 10-DOX are fusion proteins with a dioxygenase and a hydroperoxide isomerase (cytochrome P450) domain with a cysteine heme ligand. The P450 domain of 10-DOX lacked the crucial cysteine heme ligand and was without hydroperoxide isomerase activity. LDSs and 10-DOX are newly characterized heme containing fungal dioxygenases, with homology to PGHS of vertebrates. Their metabolites regulate reproduction, development, and act as signal molecules with the host after pathogen attack.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-108770 |
Date | January 2009 |
Creators | Garscha, Ulrike |
Publisher | Uppsala universitet, Institutionen för farmaceutisk biovetenskap, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, 1651-6192 ; 109 |
Page generated in 0.0026 seconds