Return to search

Structure and dynamics of intrinsically disordered regions of MAPK signalling proteins / Structure et dynamique des régions intrinsèquement désordonnées des MAPK

Les voies de transduction du signal cellulaire permettent aux cellules de répondre aux signaux de l'environnement et de les traiter. Les voies de transduction de kinases MAP (MAPK) sont bien conservées dans toutes les cellules eucaryotes et sont impliquées dans la régulation de nombreux processus cellulaires importants. Les régions intrinsèquement désordonnées (RID), présentes dans de nombreuses MAPK, n'étaient pas encore structurellement caractérisées. Les RID de MAPK sont particulièrement importantes car elles contiennent des motifs de liaison qui contrôlent les interactions entre les protéines MAPK elles-mêmes et aussi entre les protéines MAPK et d'autres protéines contenant les mêmes motifs. La résonance magnétique nucléaire (RMN) en combinaison avec d'autres techniques biophysiques a été utilisée pour étudier les RID de kinase des voies de transduction du signal MAPK. La spectroscopie RMN est bien adaptée pour l'étude des protéines intrinsèquement désordonnées à l'échelle atomique. Les déplacements chimiques et couplages dipolaires résiduels peuvent être utilisés conjointement avec des méthodes de sélection d'ensemble pour étudier la structure résiduelle dans les RID. La relaxation de spin nucléaire nous renseigne sur les mouvements rapides. Des titrations par RMN et des techniques de spectroscopie d'échange peuvent être utilisées pour surveiller la cinétique d'interactions protéine-protéine. Cette étude contribuera à la compréhension du rôle des RID dans les voies de transduction du signal cellulaire. / Protein signal transduction pathways allow cells respond to and process signals from the environment. A group of such pathways, called mitogen-activated protein kinase (MAPK) signal transduction pathways, is well conserved in all eukaryotic cells and is involved in regulating many important cell processes. Long intrinsically disordered region (IDRs), present in many MAPKs, have remained structurally uncharacterised. The IDRs of MAPKs are especially important as they contain docking-site motifs which control the interactions between MAPK proteins themselves and also between MAPKs and other interacting proteins containing the same motifs. Nuclear magnetic resonance (NMR) spectroscopy in combination with other biophysical techniques was used to study IDRs of MAPKs. NMR spectroscopy is well suited for studying intrinsically disordered proteins (IDPs) at atomic-level resolution. NMR observables, such as for example chemical shifts and residual dipolar couplings, can be used together with ensemble selection methods to study residual structure in IDRs. Nuclear spin relaxation informs us about fast pico-nanosecond motions. NMR titrations and exchange spectroscopy techniques can be used to monitor kinetics of protein-protein interactions. The mechanistic insight into function of IDRs and motifs will contribute to understanding of how signal transduction pathways work.

Identiferoai:union.ndltd.org:theses.fr/2014GRENV060
Date11 December 2014
CreatorsKragelj, Jaka
ContributorsGrenoble, Jensen, Malene, Blackledge, Martin
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds