Podocarpic acid (a diterpenoid resin acid extracted from the Podocarpacea specie of plants) has shown cytotoxicity against carcinoma of the nasopharynx. Since this discovery has been made, research has been performed in order to alter the structure of the resin acid so as to increase the anticancer activity. The carboxylic acid and phenol functional groups, which are present in podocarpic acid, make it possible to synthesize new derivatives selectively at the C-15, C-13, and C-7 positions as well as by substitution of the phenol hydroxyl group. Thus numerous derivatives can be prepared, in high yield, for the purpose of investigating their potential, as new drug leads for the treatment of cancer. In this study, Doyle's catalyst (Dirhodium tetrakis caprolactamate) was used to form a novel derivative in high yield (85%) which contained a 3-membered aziridine ring at the C-6 and C-7 position. The main thrust of this research involved the formation a series of novel derivatives of the aziridine compound by utilizing phenol and m-chlorophenol as nucleophiles to open the aziridine ring. These novel compounds will now be sent to the National Institute of Health (NIH) for bioassay against 60 human cancer cell lines.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-4316 |
Date | 01 January 2007 |
Creators | Rhoden, Stephen |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0022 seconds