Return to search

Computational spoon shape optimization for use by patients with motor impairments / Automatisk anpassning av formen på skedar via optimering för patienter med rörelsenedsättningar

This thesis investigates whether the shape of eating utensils can be optimized using computational methods. This is done by creating a system to do so for a specific case, spoons, and see if any insurmountable problems are encountered. As this system is meant to optimize spoons rather than eating utensils in general, there are a few simplifications that can be done when modelling the eating process. The spoons are represented by a set of parameters that are further divided into groups. The first group representing the bowl, followed by a variable number of handle segments. The parameter sets are evaluated by calculating the volume between the lowest point on the rim and the bottom of the bowl, giving both the volume remaining at the end as well as the volume spilt over the course of the motion. This, together with the final direction and tilt of the bowl as well as a measure of spoon complexity, is processed into a score value. The chosen optimization method is gradient descent, with a variable step length. The results show that the optimization process does work, and the resulting spoons look plausible. The conclusion is that the approach is viable, but there are a number of changes and improvements needed to make things work for practical purposes. / Det här examensarbetet undersöker om formen på bestick kan anpassas kan anpassas för speciella behov med hjälp av optimeringslära. Målet är att utveckla ett system som optimerar formen på ett specialfall, skedar, till specifika ätrörelser för att se om det är möjligt. Specialfallet skedar används eftersom det förenklar de beräkningar som behöver göras vid modelleringen av ätandet. Skedarna representeras av en parametriserad modell som delar upp skeden i segment bestående av parametergrupper. Det första segmentet representerar skedskålen, de följande skedskaftet. Skaftets längd kan ändras genom att variera antalet skaft-segment. Skedarna utvärderas genom att beräkna volymen mellan skedskålskanten och den lägsta punkten på skedskålen under hela ätrörelsen. Detta ger både hur mycket av innehållet som når munnen (lägsta volymen som hittats) samt hur mycket som spillts (skillnaden mellan den initiala och den lägsta volymen). Detta, tillsammans med hur skeden är positionerad relativt munnen i slutet av rörelsen samt hur komplext skedskaftet är, agerar som grund till hur skeden poängsätts. Själva optimeringen sker genom 'gradient descent' med en variabel steglängd. Det system som implementerats visar på att det är möjligt att använda optimeringslära för detta syfte, och de skedar som skapas ser rent intuitivt ut att fungera som poängsättningen lovar. Slutsatsen blir att metoden i sig fungerar, men att flera förbättringar krävs innan den kan användas i praktiken. / <p>The CSC-institution was re-organized into EECS towards the end of the project.</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-226689
Date January 2018
CreatorsMossler Rockström, Martin
PublisherKTH, Skolan för datavetenskap och kommunikation (CSC), KTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2018:95

Page generated in 0.0107 seconds