Return to search

Modeling Of Helically Applied Current To The Inductively Coupled Radio Frequency Plasma Torch In Two Dimensions

The electrodeless plasma discharge is typically driven by radio frequency (RF)
power supply within the range (0.2 &iexcl / 40 MHz). The applied power is coupled
into the plasma inductively called inductively coupled plasma (ICP). RF ICP
technique has achieved significance importance in a diversity of research and
industrial applications for over the last threes decades. It is still required to
undertake both theoretical and experimental research.
In this work, RF ICP technique is applied on the torch modeling in 2D. Based
on extended electromagnetic vector potential representation, an axisymmetric
model in 2D is proposed for the calculations of the electromagnetic fields in an
RF ICP torch. The influence of axial vector potential is included to the vector
potential formulations. This is achieved by imposing a helical current carrying
wire configuration. The corresponding governing equations are solved numerically
by applying finite element method (FEM) using commercial partial differential
equation solver (Flex PDE3). Based on this model, the plasma behavior and
properties are examined in terms of plasma parameters. Besides, a comparative
iii
analysis is made between proposed model called helical configuration and the one
currently available in the literature called circular configuration.
This study shows relatively little difference between temperature fields predicted
by two models. However, significant difference is observed between corresponding
flows and electromagnetic fields. Especially, tangential flow which is
observed in helical configuration vanishes in circular configuration. The proposed
model offers an effective means of accounting for the variations of the helical coil
geometry on the flow and temperature fields and achieving a better representation
of the electromagnetic fields in the discharge. Finally, it is concluded that
minimum number of turns (n = 2) yields significant difference between two models
whereas, maximum allowable number of turns yield no distinctions on the
results of two models in terms of azimuthally applied current. However, axial
effect of current still exists but very small with respect to the result obtained
with minimum number of turns.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12604691/index.pdf
Date01 January 2004
CreatorsCanturk, Mehmet
ContributorsBilikmen, Sinan
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0017 seconds