This work is concerned with the introduction of a new higher order numerical scheme based on the discontinuous Galerkin method (DGM). We follow the methodology of higher order finite volume (HOFV) and spectral volume (SV) schemes and introduce a reconstruction operator into the DGM. This operator constructs higher order piecewise polynomial reconstructions from the lower order DGM scheme. We present two variants: the generalization of standard HOFV schemes, already proposed by Dumbser et al. (2008) and the generalization of the SV method introduced by Wang (2002). Theoretical aspects are discussed and numerical experiments with the focus on a 2D advection problem are carried out. Powered by TCPDF (www.tcpdf.org)
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:335084 |
Date | January 2014 |
Creators | Dominik, Oldřich |
Contributors | Kučera, Václav, Dolejší, Vít |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds