We deal with the numerical solution of the Navier-Stokes equations describing a motion of viscous compressible flows. The governing equations are discretized with the aid of discontinuous Galerkin finite element method which is based on a discontinuous piecewise polynomial approximation. The discretizations leads to a large nonlinear algebraic system. In order to solve this system efficiently, we develop the so-called p-multigrid solution strategy which employ as a projec- tion and a restriction operators the L2 -projection in the spaces of polynomial functions on each element separately. The p-multigrid technique is studied, deve- loped and implemented in the code ADGFEM. The computational performance of the method is presented.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:305156 |
Date | January 2012 |
Creators | Živčák, Andrej |
Contributors | Dolejší, Vít, Knobloch, Petr |
Source Sets | Czech ETDs |
Language | Slovak |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds