Dans le contexte du calcul géométrique abstrait, les machines à signaux ont été développées comme le pendant continu des automates cellulaires capturant les notions de particules, de signaux et de collisions. Une question importante est la génération automatique d’un automate cellulaire reproduisant la dynamique d’une machine à signaux donnée. D’une part, il existe des conversions ad hoc. D’autre part, ce n’est pas toujours possible car certaines machines à signaux présentent des comportements « continus ». Par conséquent, la discrétisation automatique de telles structures est souvent complexe et pas toujours possible. Cette thèse propose trois manières différentes de discrétiser automatiquement les machines à signaux en automates cellulaires, avec ou sans approximation possible. La première s’intéresse à une sous-catégorie de machines à signaux, qui présente des propriétés permettant d’assurer une discrétisation automatique exacte pour toute machine de ce type. La deuxième est utilisable sur toutes les machines mais ne peut assurer ni l’exactitude ni la correction du résultat. La troisième s’appuie sur une nouvelle expression de la dynamique d’une machine à signaux pour proposer une discrétisation. Cette expression porte le nom de modularité et est décrite avant d’être utilisée pour discrétiser. / In the context of abstract geometrical computation, signal machines have been developed as a continuous counter part of cellular automata capturing the notions of particles, signals and collisions. An important issue is the automatic generation of a cellular automaton mimicking the dynamics of a given signal machine. On the one hand, ad hoc conversions exist.On the other hand, it is not always possible since some signal machines exhibit “purely continuous” behaviors. Therefore, automatically discretizing such structures is often complicated and not always possible. This thesis proposes different ways to automatically discretize signal machines into cellular automata, both with and without handling the possiblity of approximation.The first is concerned with a subcategory of signal machines, which has properties ensuring an exact automatic discretization for any machine of this type. The second is usable on all machines but cannot guarantee the exactness and correction of the result. The third is based on a new expression of the dynamics of a signal machine to propose a discretization.This dynamical expression takes the name of modularity and is described before being used to discretize.
Identifer | oai:union.ndltd.org:theses.fr/2018ORLE2009 |
Date | 10 April 2018 |
Creators | Besson, Tom |
Contributors | Orléans, Durand-Lose, Jérôme |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds