Return to search

Fuzzy Control of Flexible Manufacturing Systems

Flexible manufacturing systems (FMS) are production systems consisting of identical multipurpose numerically controlled machines (workstations), automated material handling system, tools, load and unload stations, inspection stations, storage areas and a hierarchical control system. The latter has the task of coordinating and integrating all the components of the whole system for automatic operations. A particular characteristic of FMSs is their complexity along with the difficulties in building analytical models that capture the system in all its important aspects. Thus optimal control strategies, or at least good ones, are hard to find and the full potential of manufacturing systems is not completely exploited.

The complexity of these systems induces a division of the control approaches based on the time frame they are referred to: long, medium and short term. This thesis addresses the short-term control of a FMS. The objective is to define control strategies, based on system state feedback, that fully exploit the flexibility built into those systems. Difficulties arise since the metrics that have to be minimized are often conflicting and some kind of trade-offs must be made using "common sense". The problem constraints are often expressed in a rigid and "crisp" way while their nature is more "fuzzy" and the search for an analytical optimum does not always reflect production needs. Indeed, practical and production oriented approaches are more geared toward a good and robust solution.

This thesis addresses the above mentioned problems proposing a fuzzy scheduler and a reinforcement-learning approach to tune its parameters. The learning procedure is based on evolutionary programming techniques and uses a performance index that contains the degree of satisfaction of multiple and possibly conflicting objectives. This approach addresses the design of the controller by means of language directives coming from the management, thus not requiring any particular interface between management and designers.

The performances of the fuzzy scheduler are then compared to those of commonly used heuristic rules. The results show some improvement offered by fuzzy techniques in scheduling that, along with ease of design, make their applicability promising. Moreover, fuzzy techniques are effective in reducing system congestion as is also shown by slower performance degradation than heuristics for decreasing inter- arrival time of orders. Finally, the proposed paradigm could be extended for on-line adaptation of the scheduler, thus fully responding to the flexibility needs of FMSs. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/36531
Date17 February 1998
CreatorsDadone, Paolo
ContributorsElectrical Engineering, VanLandingham, Hugh F., Sherali, Hanif D., Bay, John S.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationThesis.pdf

Page generated in 0.0021 seconds