A Hamiltonian system in potential form (formula in the original abstract) subject to smooth constraints on q can be viewed as a Hamiltonian system on a manifold, but numerical computations must be performed in Rn. In this paper methods which reduce "Hamiltonian differential algebraic equations" to ODEs in Euclidean space are examined. The authors study the construction of canonical parameterizations or local charts as well as methods based on the construction of ODE systems in the space in which the constraint manifold is embedded which preserve the constraint manifold as an invariant manifold. In each case, a Hamiltonian system of ordinary differential equations is produced. The stability of the constraint invariants and the behavior of the original Hamiltonian along solutions are investigated both numerically and analytically.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:1565 |
Date | January 1994 |
Creators | Leimkuhler, Benedict, Reich, Sebastian |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik, Extern. Extern |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Postprint |
Format | application/pdf |
Rights | http://opus.kobv.de/ubp/doku/urheberrecht.php |
Page generated in 0.0017 seconds