Return to search

A Field Based Statistical Approach for Validating a Remotely Sensed Mangrove Forest Classification Scheme

Amongst the most threatened ecosystems on Earth, mangrove forests are also one of the more difficult to work in due to their growth in mud and open water coastal zones and their dense tangled stems, branches and prop roots. Consequently, there has been an impetus to employ remotely sensed imagery as a means for rapid inventory of these coastal wetlands. To date, the majority of mangrove maps derived from satellite imagery utilize a simple mangrove classification scheme which does not distinguish mangrove species and may not be useful for conservation and management purposes. Although more elaborate satellite based mangrove classification schemes are being developed, given their enhanced complexity they deserve additional justification for end users. The purpose of this study was to statistically examine the appropriateness of one such classification scheme based on an inventory of field data. In January of 2007 and May of 2008, 61 field sample plots were selected in a stratified random fashion based on a previous classification of a degraded mangrove forest of the Isla La Palma (Sinaloa, Mexico) using Landsat TM5 data. Unlike other previous Landsat TM based classifications of this region, which simply identified the mangrove forests as one class, the mangroves were classified (i. e. mapped) according to four conditions; healthy tall, healthy dwarf, poor condition, and dead mangroves. Within each sample plot, all mangroves of diameter of breast height (dbh) greater than 2.5 cm were identified and their height, condition and dbh recorded. An estimated Leaf Area Index (LAI) value also was obtained for each sample and the shortest distance from the center of each sample plot to open flowing water was determined using a geographic information system (GIS) overlay procedure. These data were then used to calculate mean values for the four classes as well as to determine stem densities, basal areas, and the Shannon-Wiener diversity index. In order to assess the appropriateness of this mangrove classification scheme a discriminant analysis approach was then applied to these field data. The results indicate this forest has undergone severe degradation, with decreasing mean tree heights, mean dbh and species diversity. In regards to the discriminant analysis procedure, further classification of these field plots and cross-validation based on these significant variables provided high classification accuracy thus validating the appropriateness of the satellite based image classification scheme. Moreover, the discriminant analysis indicated that the estimated LAI, mean height, and mean dbh are significant in the separation of the classification of mangrove forest condition along these field sample plots.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-17739
Date01 October 2011
CreatorsKovacs, John M., Liu, Yali, Zhang, Chunhua, Flores-Verdugo, Francisco, de Santiago, Francisco Flores
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
SourceETSU Faculty Works

Page generated in 0.0018 seconds