Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-06T15:10:39Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Elaine Lima Trigueiro.pdf: 2172405 bytes, checksum: 872d4e471b17e830b4eafc478bfb3cf5 (MD5) / Made available in DSpace on 2014-08-06T15:10:39Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Elaine Lima Trigueiro.pdf: 2172405 bytes, checksum: 872d4e471b17e830b4eafc478bfb3cf5 (MD5)
Previous issue date: 2007 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Cellulose is one of the most important and the most abundant biopolymer on
the planet, playing a key role on the evolutionary history of plants. Important advances
have been made in recent years, in particular on the identification of genes and co-
expressed genes for the formation of cellulose in the primary and secondary cellular walls
of plants. In addition to its biological relevance, cellulose has a great economic importance,
not only in Brazil but in the world, especially due to the production of cellulose and paper
from Eucalyptus. The high levels of production and competition in the international market
are guaranteed by great investments, which are carried through by the forestal sector, in
particular by the Genolyptus Project – Brazilian Network for Research on Eucalyptus
Genome. This project is the result of a collective effort of companies involved on the
production of cellulose and paper and various public research institutions. Their main goal
is to identify and characterize genes involved in wood formation with the intent to
genetically improve Eucalyptus. Based on this goal, this work was developed with two
objectives. The first is doing a preliminary characterization of the cellulose synthase gene
in Eucalyptus, which is associated with the synthesis of the secondary cellular wall and is
orthologous to the gene EgCeA2, of E. grandis. The second objective is to study the
linkage disequilibrium in another gene of cellulose synthase, orthologous to the EgCesA3
gene, sampled from a wild population of E. urophylla. Regarding the CesA2 gene, an
exonic region with 427bp was sequenced from DNA samples of 12 individuals from
different species and geographic regions. The next step was to proceed with an analysis to
detect polymorphism which gave an estimate of three SNPs synonymous along the contig,
with an estimated π = 0.00212 diversity index. A clone containing the CesA2 gene was
identified through a selection from a BAC library generated in the scope of the Genolyptus
Project. This clone gives the prospect for the development of a minute characterization of
this gene structure in Eucalyptus. Additionally, concerning the CesA3 gene, the sequencing
of 32 individuals allowed for the formation of a 770bp contig with a π = 0.00185 diversity
index and detection of nine polymorphic loci distributed in intron and exon regions and at
the 3’-UTR of the gene. The analysis of the extension of linkage disequilibrium in the
CesA3 gene suggests that SNPs tend to be in strong linkage disequilibrium at a distance of
approximately 600bp. The knowledge of the position of the SNPs in the genes CesA2 and
CesA3 makes possible the use of these markers in future studies of genetic mapping. The
lack of non-synonymous SNPs in exon regions ensures that cellulose is in fact a very
important polymer for plant survival. Hence its synthesis machinery presents highly
conserved characteristics and so mutations in regions with effective transcription tend
mostly to be deleterious and therefore would not be fixed. Moreover, the analysis of CesA
gene expression in different species of Eucalyptus, was made from two boardings: “Digital
Differential Display”, from different libraries of ESTs and microarrays, optimized in the
scope of the Genolyptus project. The analysis with data of microarrays showed less
sensible in the detention of the distinguishing expression, probably had to the calls
“crossed relations”. / A celulose é um dos biopolímeros mais importantes do planeta, sendo também
o mais abundante, e sem dúvida uma característica chave na história evolutiva das plantas.
Contudo, sua biossíntese e regulação ainda não são bem compreendidas, embora avanços
importantes tenham ocorrido nos últimos anos, sobretudo na identificação de genes e
grupos de genes co-expressos para a formação de celulose na parede celular primária e
secundária de vegetais. Além de sua relevância biológica, a celulose possui uma grande
importância econômica no Brasil e no mundo, com destaque para a produção de celulose e
papel a partir de Eucalyptus. Para garantir os elevados níveis de produtividade e
competitividade no mercado internacional, grandes investimentos têm sido realizados pelo
setor florestal, destacando-se o Projeto Genolyptus – Rede Brasileira de Pesquisa do
Genoma de Eucalyptus, fruto de um esforço de empresas do setor de produção de celulose
e papel, e de diversas instituições públicas de pesquisa, que têm, dentre outros objetivos, o
intuito de identificar e caracterizar genes envolvidos na formação da madeira, para, no
futuro, usar essa informação no melhoramento genético do Eucalyptus. Nesse contexto,
este trabalho foi desenvolvido com o objetivo de realizar uma caracterização preliminar de
um gene de celulose sintase em Eucalyptus, que está relacionado à síntese da parede
celular secundária, sendo ortólogo ao gene EgCesA2, de E. grandis, bem como estudar o
desequilíbrio de ligação em outro gene de celulose sintase, ortólogo ao gene EgCesA3, em
uma amostra de uma população natural de E. urophylla. Em relação ao gene CesA2, foi
seqüenciada uma região exônica do gene, formada por 427pb, a partir de amostras de DNA
de 12 indivíduos de diferentes espécies e regiões geográficas. Procedeu-se a uma análise de
detecção de polimorfismo, e estimou-se a ocorrência de três SNPs sinônimos ao longo do
contig. Foi estimado um índice de diversidade π= 0,00212. Foi feita também uma triagem
em uma biblioteca de BAC, gerada no âmbito do Projeto Genolyptus, e foi identificado o
clone que contém o gene CesA2, o que permitirá o desenvolvimento futuro de
caracterização minuciosa da estrutura deste gene em Eucalyptus. Em relação ao gene
CesA3, a partir do seqüenciamento de 32 indivíduos, formou-se um contig de 770pb, e foi
encontrado um índice de diversidade π= 0,00185. Foi possível a detecção de nove locos
polimórficos distribuídos em regiões intrônicas, exônicas, e de 3’-UTR do gene. A análise
de extensão do desequilíbrio de ligação dentro do gene CesA3 sugere que os SNPs tendem
a se encontrar em forte desequilíbrio a uma distância de aproximadamente 600pb. O
conhecimento da posição dos SNPs nos genes CesA2 e CesA3 viabiliza a utilização destas
marcas em futuros estudos de mapeamento genético. A existência de SNPs sinônimos nas
regiões exônicas seqüenciadas corrobora com a idéia de que a celulose é um polímero
muito importante à sobrevivência da planta, e, portanto, sua maquinaria de síntese
apresenta características bastante conservadas, de modo que mutações em regiões
efetivamente transcritas tenderiam a ser deletérias e não seriam fixadas. Além disso, foi
feita uma análise da expressão gênica dos genes CesA em diferentes espécies de
Eucalyptus, a partir de duas abordagens: a “Digital Differential Display”, a partir de
diferente bibliotecas de ESTs e os microarrays, otimizados no âmbito do projeto
Genolyptus. A análise com dados de microarrays revelou-se menos sensível na detecção
da expressão diferencial, provavelmente devido às chamadas “relações cruzadas”.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tde/2892 |
Date | January 2007 |
Creators | Trigueiro, Elaine Lima |
Contributors | Coelho, Alexandre Siqueira Guedes |
Publisher | Universidade Federal de Goiás, Programa de Pós-graduação em Agronomia (EAEA), UFG, Brasil, Escola de Agronomia e Engenharia de Alimentos - EAEA (RG) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Relation | 842119561133988381, 600, 600, 600, 600, 4500684695727928426, -604049389552879283, -2555911436985713659, ALZATE, S. B. A. Caracterização da madeira de árvores de clones de Eucalyptus grandis, E. saligna, e E. grandis x urophylla. 2004. 133f. Tese (Doutorado em Recursos Florestais)- Universidade de São Paulo, Piracicaba, 2004. ALONI, Y.; COHEN, R.; BENZIMAN, M.; DELMER, D. P. Solubilization of the UDP- glucose: 1,4-beta-D-glucan 4-beta-D- glucosyltransferase (cellulose synthase) from Acetobacter xylinum. A comparison of regulatory properties with those of the membrane- bound form of the enzyme. Journal of Biological Chemistry, Bethesda, v. 258, n. 7, p. 4419-4423, 1983. ALTSCHUL S. F.; GISH, W.; MILLER, W. MYERS, E. W. LIPMAN, D. J. Basic Local Alignment Search Tool. Journal of Molecular Biology, v. 215, n. 3, p. 403-410, 1990. AMOR, Y.; HAIGLER, C. H.; JONHSON, S.; WAINSCOTT, M.; DELMER, D.P. A membrane-associated from of sacarose synthase and its potencial role in synthesis of cellulose and callose in plants. Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 92, n. 20, p. 9353-9357, 1995. ANDRADE, A.; CELEDÓN, P. A. F.; LABATE, C. A. O proteoma da madeira. Biotecnologia, Ciência e Desenvolvimento, Brasília, v. 36, n. 1, p. 10-17, 2006. ARIOLI, T.; PENG, L.; BETZNER, A. S.; BURN, J.; WITTKE, W.; HERTH, W.; CAMILLERI, C.; HÖFTE, H.; PLAZINSKI, J.; BIRCH, R.; CORK, A.; GLOVER, J.; REDMOND, J.; WILLIAMSON, R. E. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science, Washington, v. 279, n. 5351, p. 717-719, 1998. ASSOCIAÇÃO BRASILEIRA DE CELULOSE E PAPEL (Bracelpa). Informe Anual, 2006. Disponível em <http://www.bracelpa.org.br/anual/perfil2006.pdf >. Acesso em: 23 ago. 2006. ASSOCIAÇÃO BRASILEIRA DE CELULOSE E PAPEL (Bracelpa). Relatório Socioambiental, 2005. Disponível em < http://www.bracelpa.org.br/br/social/socioambient.pdf >. Acesso em: 10 de set. 2006. ASSOCIAÇÃO BRASILEIRA DE CELULOSE E PAPEL (Bracelpa). Reflorestamento: espécies mais plantadas de Eucalyptus, 2004. Disponível em < http://www.bracelpa.org.br/br/numeros/reflorestamento/06-Eucalyptus.pdf >. Acesso em: 10 de set. 2006. AUDIC, S.; CLAVERIE, J. M. The significance of digital gene expression profiles. Genome Research, Cold Spring Harbor, v. 7, n. 10, p. 986-995, 1997. 91 BARRET, J. C.; FRY, B.; MALLER, J.; DALY, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, Oxford, v. 21, n. 2, p. 263-265, 2005. BERGELSON, J.; STAHL, E.; DUDEK, S. KREITMAN, M. Genetic variation within and among populations of Arabidopsis thaliana. Genetics, Pittsburgh, v. 148, n. 3, p. 1311- 1323, 1998. BHATTRAMAKKI, D.; DOLAN, M.; HANAFEY, M.; WINELAND, R.; VASKE, D; REGISTER, J. C.; TINGEY, S. V.; RAFALSKI, A. Insetion-deletion polymorphims in 3’ regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Molecular Biology, Springer Netherlands, v. 48, n. 5, p. 256-259, 2002. BROOKES, A. J. The essence of SNPs. Gene, Amsterdam, v. 234, p. 177-186, 1999. BROWN, R. M.; SAXENA, I. M.; KUDLICKA, K. Cellulose biosynthesis in higher plants. Trends in Plant Science, London, v.1, n. 5, p. 149-156, 1996. BROWN JR., M. R.; SAXENA, I.M. Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiology and Biochemistry, Amsterdam, v. 38, n. 1, p. 57-67, 2000. BURTON, R. A.; SHIRLEY, N. J.; KING, B. J.; HARVEY, A. J.; FINCHER, G. B. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co- expressed genes. Plant Physiology, Rockville, v. 134, n. 1, p. 224-236, 2004. CARNEIRO, N. P.; CARNEIRO, A. A.; GUIMARÃES, C. T.; PAIVA, E. Desvendando o código genético. Biotecnologia, Ciência e Desenvolvimento, Brasília, v. 17, p. 50-58, 2000. CHAKRAVARTI, A. Population genetics-making sense out of sequence. Nature Genetics, New York, v. 21, n. 1, p. 56-60, 1999. CHEN, Z.; HONG, X.; ZHANG, H.; WANG, Y.; LI, X.; ZHU, J.K.; GONG, Z. Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. The Plant Journal, Malden, v. 43, n. 2, p. 273-283, 2005. CHING A.; CALDWELL, K.; JUNG, M.; DOLAN, M.; SMITH, H.; TINGEY, S.; MORGANTE, M.; RAFALSKI, A. SNP frequency and haplotype structure of 18 maize genes. BMC Genetics, London, v. 3, n. 19, p. 1-14, 2002. CHO, R. J; MINDRINOS, M.; RICHARDS, D.R.; SAPOLSKY, R. J; ANDERSON, M.; DRENKARD, E.; DEWDNEY, J.; REUBER, T. L.; STAMMERS, M.; FEDERSPIEL, N. Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nature Genetics, New York, v. 23, n. 3, p. 203-207, 1999. COLLINS, F. S.; GUYER, M. S.; CHAKRAVARTI, A. Variation on a theme: cataloging human DNA sequence variation. Science, Washington, v. 278, n. 5343, p. 1580-1581, 1997. 92 DELMER, D. P.; Amor, Y. Cellulose biosynthesis. The Plant Cell, Rockville, v. 7, n. 7, p. 987-1000, 1995. DESPREZ, T.; Vernhettes, S.; Fagard, M.; Refrégier, G.; Desnos, T.; Aletti, E.; Py, N.; Pelletier, S.; Höfte, H. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiology, Rockville, v. 128, n. 2, p. 482-490, 2002. DOYLE, J. J.; DOYLE J. L. Isolation of plant DNA from fresh tissue. Focus, Carlsbad, v. 12, n. 1, p. 13-15, 1991. DUARTE, F. A. S. Avaliação da madeira de Betula pendula, Eucalyptus globulus e de híbrido de Eucalyptus grandis x Eucalyptus urophylla à produção de polpa celulósica Kraft. 2007. 107f. Dissertação (Mestrado em Recursos Florestais- Tecnologia de Produtos Florestais)- Universidade de São Paulo, Esalq, Piracicaba, 2007. DUAN, J.; WAINWRIGHT, M. S.; COMERON, J. M.; SAITOU, N.; SANDERS, A R.; GELERNTER, J.; GEJMAN, P. V. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Human Molecular Genetics, Oxford, v. 12, n. 3, p. 205-216. 2003. ELDRIDGE, K.; DAVIDSON, J.; HARWOOD, C. Eucalypt domestication and breeding. New York: Oxford University Press, 1994. 288p. EXCOFFIER, L.; LAVAL, G.; SCHNEIDER, S. Arlequin ver. 3.1: An integrated software package for population genetics. 2006. Disponível em: <http://cmpg.unibe.ch/software/arlequin3>. Acesso em 30 de julho de 2007. EWING, B.; HILLIER, L.; WENDL, M. C. & GREEN, P. Base-calling of automated sequencer traces using PHRED. I. Accuracy Assessment. Genome Research, Cold Spring Harbor, v. 8, n. 3, p. 175-185, 1998. FEARNSIDE, P. M. Forests and global warming mitigation in Brazil: Opportunities in the Brazilian forest sector for responses to global warming under the "Clean Development Mechanism”. Biomass and Bioenergy, Amsterdam, v. 16, n. 3, p. 171-189, 1999. FERREIRA, M. E.; GRATTAPAGLIA, D. Introdução ao uso de marcadores moleculares em análise genética. Brasília: Empresa Brasileira de Pesquisa Agropecuária. Embrapa, 1998. 220p. FIGUEIREDO, R. C.; BRITO, M. S.; FIGUEIREDO, L. H. M.; QUIAPIN, A.C.; VITORELLI, P. M.; SILVA, L. R.; SANTOS, R. V.; MOLFETTA, J. B.; GOLDMAN, G. H.; GOLDMAN, M. H. S. Dissecting the sugarcane expressed sequence tag (SUCEST) database: unraveling flower-specific genes. Genetics and Molecular Biology, São Paulo, v. 24, n. 1-4, p. 77-84, 2001. FLINT-GARCIA, S. A.; THORNSBERRY, J. M.; BUCKLER IV, E. S. Structure of linkage disequilibrium in plants. Annual Review Plant Biology, Palo Alto, v. 54, n. 1, p. 257-374, 2003. 93 FOELKEL, C. E. B.; MORA, E.; MENOCHELLI, S. Densidade básica: sua verdadeira utilização como índice de qualidade da madeira de eucalipto para a produção de celulose. O papel, São Paulo, v. 53, n. 5, p. 35-40, 1992. FUKUDA, H. Xylogenesis: initiation, progression, and cell death. Annual Review Plant Physiology, Palo Alto, v. 47, n. 1, p. 299-325, 1996. GAUT, B. S.; LONG, A. D. The lowdown on linkage disequilibrium. The Plant Cell, Rockville, v. 15, n. 7, p. 1502-1506, 2003. GONZÁLEZ, E.R. Transformação genética de Eucalyptus grandis e do híbrido E. grandis x E. urophylla via Agrobacterium. 2002. 93f. Tese (Doutorado em Agronomia: Genética e Melhoramento de Plantas)- Escola de Agronomia Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2002. GRATTAPAGLIA, D.; BRADSHAW JR., H. D. Nuclear DNA content of commercially important Eucalyptus species and hybrids. Canadian Journal of Forest Research, Ottawa, v. 24, p. 1074-1078, 1994. GUIMARÃES, P. E. M.; COSTA, M. C. R.; SNPs: sutis diferenças de um código. Biotecnologia Ciência & desenvolvimento, Brasília, v. 26, n. 5, p. 24-27, 2002. GUT, I. G., Automation in genotyping single nucleotide polymorphisms. Human Mutation, Hoboken, v. 17, n. 6, p. 475-492, 2001. HERTZBERG, M.; ASPEBORG, H.; SHRADER, J.; ANDERSSON, A.; ERLANDSSON, R.; BLOMQVIST, K.; BHALERAO, R.; UHLE’N, M.; TEERI, T. T.; LUNDEBERG, J.; SUNDBERG, B.; NILSSON, P.; SANDBERG, G. O. A transcriptional roadmap to wood formation. Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 98, n. 25, p. 14732-14737. 2001. HILL, W. G.; ROBERTSON, A. Linkage disequilibrium in finite populations. Theoretical and Applied Genetics, Heidelberg, v. 38, n. 6, p. 226-231, 1968. HOLLAND, N.; HOLLAND, D.; HELENTJARIS, T.; DHUGGA, K. S.; XOCONOSTLE- CAZARES, B. & DELMER, D. P. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiology, Rockville, v. 123, n. 4, p. 1313-1324, 2000. HOUSE, S. M. Reproductive biology of Eucalyptus. In: WILLIAMS, J.; WOINARSKI, J. (Ed.) Eucalypt Ecology, Cambridge University Press, 1997. cap. 4, p. 56-92. INSTITUTO DE PESQUISAS E ESTUDOS FLORESTAIS (IPEF). Chave de Identificação de Espécies Florestais, 2006. Disponível em < http://www.ipef.br/identificação/cief/espécies. Acesso em 12 de novembro de 2006. JOHNSON, G. C.; ESPOSITO, L.; BARRATT, B. J.; SMITH, A. N.; HEWARD, J.; DI GENOVA, G.; UEDA, H.; CORDELL, H. J.; EAVES, I. A.; DUDBRIDGE, F. Haplotype tagging for the identification of commom disease genes. Nature Genetics, New York, v. 29, n. 2, p. 233-237, 2001. 94 JORDE, L. B. Linkage disequilibrium and the search for complex disease genes. Genome Research, Cold Spring Harbor, v. 10, n. 10, p. 1435-1444, 2000. KAPPOR, M.L.; SHARMA, V.K. Experimentally synthesized allotetraploides in Eucalyptus. Silvae Genetica, Frankfurt, v. 34, n. 1, p. 19-22, 1985. KIMURA, S.C.; LAOSINCHAI W.; ITOH, T.; CUI, X.; LINDER, R.; BROWN JR., R.M. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. The Plant Cell, Rockville, v. 11, n. 11, p. 2075–2085, 1999. KIRST, M.; MYBURG, A. A.; LEÓN, J. P. G., KIRST, M. E.; SCOTT, J. Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of Eucalyptus. Plant Physiology, Rockville, v. 135, n. 4, p. 2368-2378, 2004. KIRST, M.; CHRISTOPHER, J. B.; MYBURG, A. A.; ZENG, Z.; SEDEROFF, R. R. Genetic architecture of transcript-level variation in differentiating xylem of a Eucalyptus hybrid. Genetics, Pittsburgh, v. 169, n. 4, p. 2295-2303, 2005. KLEYN, P. W.; VESELL, E. S. Genetic variation as guide to drug development. Science, Washington, v. 281, n. 5384, p. 1820-1821, 1998. KWOK, P. Methods for genotyping single nucleotide polymorphisms. Annual Review Genomics and Human Genetics, Palo Alto, v.2, n. 1, p. 235-258, 2001. LEWONTIN, R. C. The interaction of selection on linkage I. Genetics, Pittsburgh, v. 49, n. 1, p. 49-67, 1964. LI, W. Molecular Evolution. Sunderland: Sinauer Associates, 1997. 487p. LIMA, W.P. Impacto ambiental do Eucalyptus. 2. ed. São Paulo: Edusp, 1996. 301p. LIPSHUTZ, R. J.; FODOR, S. P. A.; GINGERAS, T. R.; LOCKHART, D. J. High density synthetic oligonucleotide arrays. Nature Genetics, New York, v. 21, n. 1, p. 20-24, 1999. MARCOLIN, M; SANTOS, A. A.; SALATI, E. Emissões e remoções de dióxido de carbono por mudanças nos estoques de florestas plantadas. Brazilian Foundation of Sustainable Development. Brasília. Ministério de Ciência e Tecnologia, 2002. 47p. Disponível em < http://www.mct.gov.br/index.php/content/view/21456.html) >. Acesso em: 06 de fev. 2007. MATTHYSSE, A. G.; THOMAS, D. L.; WHITE, A. R.; Mechanism of cellulose synthesis in Agrobacterium tumefaciens. Journal of Bacterology, Washington, v. 177, n. 4, p.1076- 1081, 1995. MOOT, R. EST_GENOME: a program to align spliced DNA sequences to unspliced genomic DNA. Computer Applications in the Biosciences, Oxford, v. 13, n. 4, p. 477- 478, 1997. 95 MOURA, V. P. G. O germoplasma de Eucalyptus urophylla S. T. Blake no Brasil. Comunicado técnico, n.111. Brasília: Embrapa-Recursos Genéticos e Biotecnologia, 2004. Disponível em < http://www.cenargen.embrapa.br/publica/trabalhos/cot111.pdf>. Acesso em: 10 de jun. 2007. MYBURG, A. A. Genetic Architecture of Hybrid Fitness and Wood Quality Traits in a Wide Interspecific Cross of Eucalyptus Tree Species. 2001. 249 f.Tese (Doutorado em Silvicultura e Genética) – Universidade da Carolina do Norte, Raleigh, NC, 2001. Disponível em < http://www.lib.ncsu.edu/theses/available/etd-20010723-175234/>. Acesso em: 27 de julho de 2007. MYBURG, A. A.; VOLGL, C.; GRIFFIN, R.; SEDEROFF, R. R.; WHETTEN, R. W. Genetics of postzygotic isolation in Eucalyptus: whole- genome analysis of barriers to introgression in a wide interespecific cross of Eucalyptus grandis and E. globulus. Genetics, Pittsburgh, v. 166, n. 1, p. 1405-1418, 2004. MUELLER S. C.; BROWN JR, R. M. Evidence for an intramembrane component associated with a cellulose microfibril synthesizing complex in higher plants. Journal of Cell Biology, New York, v. 84, n. 2, p. 314-326, 1980. NAIRN, J. C.; HASELKORN, T. Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiospermas. New Phytologist, Oak Ridge, v. 166, n. 3, p. 907-915, 2005. NASU, S.; SUZUKI, J.; OHTA, R.; HASEGAWA, H.; YUI, R.; KITAZAWA, N. Search for and analysis of single nucleotide polymorphisms (SNPs) in Rice (Oryza sativa, Oryza rufipogon) and establishment of SNP Markers. DNA Research, Oxford, v. 9, n. 5, p. 163- 171, 2002. NICKERSON, D. A.; TOBE, V. O.; TAYLOR, S. L. PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Research, Oxford, v. 25, n. 14, p. 2745-2751, 1997. NICOL, F.; HIS, I.; JAUNEAU, A.; VERNHETTES, S.; CANUT, H.; HÖFTE, H. A plasma membrane-bound putative endo-1,4β-D- glucanase is required for normal wall assembly and cell elongation in Arabidopsis. The EMBO Journal, New York, v. 17, n. 19, p. 5563-5576, 1998. NEI, M.; W. LI. Mathematical model for studying genetic variance in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 76, n. 10, p. 5269-5273, 1979. NORDBORG, M.; BOREVITZ, J. O.; BERGELSON, J.; BERRY, C. C.; CHORY, J.; HAGENBLAD, J.; KREITMAN, M.; MALOOF, J. N.; NOYES, T.; OEFNER, P. J.; STAHL, E. A.; WEIGEL, D. The extent of linkage disequilibrium in Arabidopsis thaliana. Nature Genetics, New York, v. 30, n. 2, p. 190-193, 2002. OHMIYA, Y.; SAMEJIMA, M.; SHIROISHI, M.; AMANO, Y.; KANDA, T.; SAKAI, F.; HAYASHI, T. Evidence that endo-1,4-β-glucanases act on cellulose in suspension- cultured poplar cells. The Plant Journal, Malden, v. 24, n. 2, p. 147-158, 2000. 96 PAREDEZ, A.R.; SOMERVILLE, C.R.; EHRDARDT, D.W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science, Washington, v. 9, n. 5779, p. 1482-1483, 2006. PAGE, R. D. TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, Oxford, v. 12, n. 4, p. 357-358, 1996. PEAR, J. R.; KAWAGOE, Y.; SCHRECKENGOST, W. E.; DELMER, D. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 93, n. 22, p. 12637-12642, 1996. POTTS, B.M.; WILTSHIRE, R.J.E. Eucalypt genetics and genecology. In: WILLIAMS, J.; WOINARSKI, J.(Ed.) Eucalypt Ecology. Cambridge University Press, 1997. cap.4, p. 56- 92. POT, D.; MCMILLAN, L.; ECHT, C.; PROVOST, G. L.; GARNIER-GÉRÉ, R.; CATO, S.; PLOMION, C. Nucleotide variation in genes involved in wood formation in two pine species. New Phytologist, Oak Ridge, v. 167, n. 1, p. 101-112, 2005. PÓVOA, A. M. Frequência de SNPs, estrutura de haplótipos e desequilíbrio de ligação para os genes CAD2 e COMT2 da via de lignificação em Eucalyptus. 2005. 126f. Dissertação (Mestrado em Ciências Genômicas e Biotecnologia)- Universidade Católica de Brasília, Brasília, 2005. PRIMMORE, S. B. Princípios de Análise do Genoma: um guia para mapeamento e seqüenciamento de DNA de diferentes organismos. 2 ed. Ribeirão Preto: FUNPEC, 2003. 193p. PRYOR, L. Biology of Eucalyptus. London: Edward Arnold, 1976. 82p. RAFALSKI, A. Applications of single nucleotide polymorphisms in crop genetics. Opinion in Plant Biology, Philadelphia, v. 5, n. 2, p. 94-100, 2002. RANIK, M.; MYBURG, A. Six new cellulose synthase genes from Eucalyptus are associated with primary and secondary cell wall biosynthesis. Tree Physiology, Victoria, v. 26, n. 7, p. 545-556, 2006. RAVEN, P. H.; EVERT, R. F.; EICHHORN, S. E. Biologia Vegetal. 6 ed. Rio de Janeiro: Guanabara Koogan, 2002. 906p. READ, S. M. BACIC, T. Prime time for cellulose. Science, Washington, v. 295, n. 5552, p. 59-60, 2002. REMINGTON, D. L; THORNSBERRY, J. M; MATSUOKA, Y.; WILSON, L. M. WHITT, S. R.; DOEBLEY, J.; KRESOVICH, S.; GOODMAN, M. M. BUCKLER, E. S. Struture of linkage disequilibrium and phenotypic associations in the maize genome. 97 Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 98, n. 20, p.11479-11484, 2001. RIBEIRO, F. S.; ZANI FILHO, J. Variação da densidade básica da madeira em espécies/procedências de Eucalyptus spp. Instituto de Pesquisa e Estudos Florestais, Araraquara, v. 1, n. 46, p. 76-85, 1993. ROMUALDI, C.; BORTOLUZZI, S.; DANIELI, G. A. Detecting differentially expressed genes in multiple tag sampling experiments: comparative evaluation of statistical tests. Human Molecular Genetic, Oxford, v.10, n. 19, p. 2133-2141, 2001. ROZAS, J.; ROZAS, R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis, Bioinformatics, Oxford, v. 2, n. 15, p. 174-175, 1999. ROZEN, S. & SKALETSKY, H. J. Primer 3 on WWW for general users and for biologist programmers. In: KRAWETZ, S.; MISENER, S. (eds) Bioinformatics methods and protocols: methods in molecular biology. Totowa: Human Press, 2000. p. 365-386. Disponível em: http://fokker.wi.mit.edu/primer3/. RUSSO, C. A. M. Como escolher genes para problemas filogenéticos específicos. In: Matioli, S. R. (Ed). Biologia Molecular e Evolução. Ribeirão Preto: Holos Editora, 2001, cap. 12, p. 130-136. SAITOU, N. & NEI, M. The neighbor-joining method: a new method for reconstructin phylogenetic trees. Molecular biology and evolution, Oxford, v. 4, n. 4, p. 405-425, 1997. SAEED, A.I.; SHAROV, V.; WHITE, J.; LI, J.; LIANG, W.; BHAGABATI, N.; BRAISTED, J.; KLAPA, M.; CURRIER, T.; THIAGARAJAN, M.; STURN, A.; SNUFFIN, M.; REZANTSEV, A.; POPOV, D.; RYLTSOV, A.; KOSTUKOVICH, E.; BORISOVSKY, I.; LIU, Z.; VINSAVICH, A.; TRUSH, V.; QUACKENBUSH, J. TM4: a free, open-source system for microarray data management and analysis. BioTechniques, London, v. 34, n. 2, p. 374-378, 2003. SALAZAR, M. M. Anotações e caracterização preliminar de genes de celulose sintase em diferentes espécies de Eucalyptus. 2006. 78f. Dissertação (Mestrado em Biologia Molecular e Celular)- Universidade Federal de Goiás, Goiânia, 2006. SANTOS, S. N. Genes de lignificação em Eucalyptus: estrutura e diversidade genética dos genes 4cl e ccoaomt. 2005. 208f. Dissertação (Mestrado em Ciências Genômicas e Biotecnologia)- Universidade Católica de Brasília, Brasília, 2005. SAMUGA, A.;JOSHI, C. P. A new cellulose synthase gene (PtrCesA2) from aspen xylem is orthologous to Arabidopsis AtCesA7 (irx3) gene associted with secondary cell wall synthesis. Gene, Amsterdam, v. 334, n. 1, p. 37-44, 2002. SAXENA, I.M.; LIN, F. C.; BROWN JR, R. M. Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Molecular Biology, Springer Netherlands, v. 15, n. 5, p. 673-683, 1990. 98 SAXENA, I.M.; BROWN JR., I. M. Cellulose biosynthesis: current views and evolving concepts. Annals of Botany, Oxford, v. 96, n. 1, p. 9-21, 2005. SCANAVA JÚNIOR, L. Caracterização silvicultural, botânica e tecnológica do Eucalyptus urophylla S. T. Blake e de seu potencial para utilização em serraria. 2001.107f. Dissertação (Mestrado em Ciências Florestais) - Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, 2001. SHEN, L. X.; BASILION, J. P.; STANTON JR, V. P. Single-nucleotide polymorphism can cause different structural folds of mRNA. Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 96, n. 14, p. 7871-7876, 1999. SILVA JÚNIOR F. G. Qualidade da matéria prima – Um tema atual. Coluna/Artigo. Celulose Online, 2002/2003. Disponível em:< http://www.celuloseonline.com.br/colunista/colunista.asp?IDAssuntoMateria=2&iditem=96 >. Acesso em: 10 de maio de 2007. SOCIEDADE BRASILEIRA DE SILVICULTURA. Área plantada com Pinus e Eucalyptus no Brasil (Ha), 2001. Disponível em <http://www.sbs.org.br/area_plantada.htm >. Acesso em: 10 jul. 2006. STADEN, R.; BEAL, K. F. & BONFIELD, J. K. The staden package. Methods in Molecular Biology, v. 132, p. 115-130. 1998. TAIZ L.; ZEIGER, E. Plant Physiology. 3. ed. Sunderland: Sinauer Associates, 2002. 650p. TARAMINO, G.; TINGEY, S. Simple sequence repeats for germplasm analysis and mapping in maize. Genome Research, Cold Spring Harbor, v. 39, n. 2, p. 277-287, 1996. TAYLOR, N.G.; SHEIBLE, W.; CUTLER, S.; SOMERVILLE, C.R.; TURNER, S. R. The irregular xylem 3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. The Plant Cell, Rockville, v. 11, n. 5, p. 769-779, 1999. TAYLOR N. G.; HOWELLS, R. M.; HUTTLY, A. K.; VICKERS, K.; TURNER, S. R. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 100, n. 3, p. 1450-1455, 2003. TANAKA, K.; MURATA, K.; YAMAZAKI, M.; ONOSATO, K.; MIYAO, A.; HIROCHIKA, H. Three distinct rice cellulose syntase catalytic subunit genes required of cellulose synthesis in the secondary wall. Plant Physiology, Rockville, v.133, n. 1, p. 73- 73, 2003. TENAILLON, M. I.; SAWKINS, M. C.; LONG, A. D.; GAUT, R. L.; DOEBLEY, J. F. Patterns of DNA equence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 98, n. 16, p. 9161-9166, 2001. 99 THOMPSON, J. D.; GIBSON, T. J.; PLEWNIAK, F.; JEANMOUGIN, F. & HIGGING, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, Oxford, v. 24, n. 25, p. 4876-4882, 1997. THUMMA, B. R.; NOLAN, M. F.; EVANS, R.; MORAN, G. F. Polymorphisms in Cinnamoyl CoA Reductase (CCR) are Associated with Variation in Microfibril Angle in Eucalyptus spp. Genetics, New York, v. 171, n. 2, p. 1257-1268, 2005. TURNER, S. R.; SOMERVILLE, C. R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. The Plant Cell, Rockville, v. 9, n. 5, p. 689-701, 1997. VAZ, A. R. C. Posicionamento de microssatélites em clones BAC: rumo a integração do mapa genético e mapa físico (BACs) de Eucalyptus grandis. 2005. Xf. Monografia - Trabalho de Conclusão de Curso (Graduação em Biologia) – Universidade Católica de Goiás, Goiânia, 2005. WATTERSON, G. A. On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, New York, v. 7, n. 2, p.256-276, 1975. WEIR, B.S. Genetic Data Analysis II - Methods for Discrete Population Genetic Data. Sinauer Associates, Sunderland, 1996. WILLIAMS, J.; WOINARSKI, J. Eucalypt Ecology. Cambridge University Press, 1997. 442p. WONG, H. C.; FEAR, A. L.; CALHOON, R. D.; EICHINGER, E. H.; MAYER, R.; AMIKAM, D.; BENZIMAN, M.; GELFAND, D. H.; MEADE, J. H.; EMERICK, A. W.; BRUNER, R.; BASSAT, A.; TAL, R. Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 87, n. 20, p. 8130-8134, 1990. WU, L.; JOSHI, C. P.; CHIANG, V. A xylem-specific cellulose synthase gene from aspen (Populus tremouloides) is responsive to mechanica stress. The Plant Journal, Malden, v. 22, n. 6, p. 495-502, 2000. ZHU, Y.L, SONG, Q. J. HYTEN, D.L. ; VAN TASSEL, C. P. ; MATUKUMALLI, L.K. ; GRIMM, D. R.; HYATT, S. M.; FICKUS, E. W.; YOUNG, N. D.; GREGAN, P. B. Single nucleotide polymorphism in soybean. Genetics, Pittsburgh, v. 163, n. 3, p. 123-1134, 2003. |
Page generated in 0.0075 seconds