Return to search

Models and Methods for Multiple Resource Constrained Job Scheduling under Uncertainty

We consider a scheduling problem where each job requires multiple classes of resources, which we refer to as the multiple resource constrained scheduling problem(MRCSP). Potential applications include team scheduling problems that arise in service industries such as consulting and operating room scheduling. We focus on two general cases of the problem. The first case considers uncertainty of processing times, due dates, and resource availabilities consumption, which we denote as the stochastic MRCSP with uncertain parameters (SMRCSP-U). The second case considers uncertainty in the number of jobs to schedule, which arises in consulting and defense contracting when companies bid on future contracts but may or may not win the bid. We call this problem the stochastic MRCSP with job bidding (SMRCSP-JB).We first provide formulations of each problem under the framework of two-stage stochastic programming with recourse. We then develop solution methodologies for both problems. For the SMRCSP-U, we develop an exact solution method based on the L-shaped method for problems with a moderate number of scenarios. Several algorithmic enhancements are added to improve efficiency. Then, we embed the L-shaped method within a sampling-based solution method for problems with a large number of scenarios. We modify a sequential sampling procedure to allowfor approximate solution of integer programs and prove desired properties. The sampling-based method is applicable to two-stage stochastic integer programs with integer first-stage variables. Finally, we compare the solution methodologies on a set of test problems.For SMRCSP-JB, we utilize the disjunctive decomposition (D2 ) algorithm for stochastic integer programs with mixed-binary subproblems. We develop several enhancements to the D2 algorithm. First, we explore the use of a cut generation problem restricted to a subspace of the variables, which yields significant computational savings. Then, we examine generating alternative disjunctive cuts based on the generalized upper bound (GUB) constraints that appear in the second-stage of the SMRCSP-JB. We establish convergence of all D2 variants and present computational results on a set of instances of SMRCSP-JB.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/193630
Date January 2009
CreatorsKeller, Brian
ContributorsBayraksan, Guzin, Bayraksan, Guzin, Head, Larry, Kucukyavuz, Simge, Baker, Ken
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0018 seconds