Return to search

Electronic and Magnetic Properties of Carbon-based and Boron-based Nano Materials

The structural and electronic properties of covalently and non-covalently functionalized graphene are investigated by means of first-principles density-functional-theory. The electronic characteristics of non-covalently functionalized graphene by a planar covalent organic framework (COF) are investigated. The aromatic central molecule of the COF acts as an electron donor while the linker of the COF acts as an electron acceptor. The concerted interaction of donor acceptor promotes the formation of planar COF networks on graphene. The distinctive electronic properties of covalently functionalized fluorinated epitaxial graphene are attributed to the polar covalent C–F bond. The partial ionic character of the C–F bond results in the hyperconjugation of C–F σ-bonds with an sp2 network of graphene. The implications of resonant-orbital-induced doping for the electronic and magnetic properties of fluorinated epitaxial graphene are discussed.
Isolation of single-walled carbon nanotubes (SWNTs) with specific chirality and diameters is critical. Water-soluble poly [(m- phenyleneethynylene)- alt- (p- phenyleneethynylene)], 3, is found to exhibit high selectivity in dispersing SWNT (6,5). The polymer’s ability to sort out SWNT (6,5) appears to be related to the carbon–carbon triple bond, whose free rotation allows a unique assembly. We have also demonstrated the important role of dispersion forces on the structural and electronic stability of parallel displaced and Y-shaped benzene dimer conformations. Long-range dispersive forces play a significant role in determining the relative stability of benzene dimer. The effective dispersion of SWNT depends on the helical pitch length associated with the conformations of linkages as well as π-π stacking configurations.
We have revisited the constructing schemes for a large family of stable hollow boron fullerenes with 80 + 8n (n = 0,2,3,...) atoms. In contrast to the hollow pentagon boron fullerenes the stable structures constitute 12 filled pentagons and 12 additional hollow hexagons. Based on results from density-functional calculations, an empirical rule for filled pentagons is proposed along with a revised electron counting scheme. We have also studied the relative stability of various boron fullerene structures and structural and electronic properties of B80 bucky ball and boron nanotubes. Our results reveal that the energy order of fullerenes strongly depends on the exchange-correlation functional employed in the calculation. A systematic study elucidates the importance of incorporating dispersion forces to account for the intricate interplay of two and three centered bonding in boron nanostructures.

Identiferoai:union.ndltd.org:auctr.edu/oai:digitalcommons.auctr.edu:cauetds-1145
Date22 May 2017
CreatorsGunasinghe, Rosi
PublisherDigitalCommons@Robert W. Woodruff Library, Atlanta University Center
Source SetsAtlanta University Center
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

Page generated in 0.002 seconds