In this study our purposes were to investigate the spatial distribution and seasonal variation of polycyclic aromatic hydrocarbons (PAHs) in the dissolved and particulate phase of PAHs in Er-Jen River. In addition, the potential sources of PAHs in Er-Jen River were investigated not only by finger printing, but also principal component analysis (PCA) and hierarchical cluster analysis (HCA).
¡@¡@Concentrations of dissolved and particulate PAHs ranged from 13.8 to 516 ng/L and from 4.05 to 55.9 ng/L, respectively. In March (dry season), concentrations of dissolved and particulate PAHs ranged from 38.3 to 186 ng/L and from 4.05 to 25.9 ng/L, respectively. In addition, concentrations of dissolved and particulate PAHs ranged from 32.3 to 82.8 ng/L and from 14.8 to 85.3 ng/L, respectively in September (wet season). The highest total PAH concentration in this area was found in Station Er-3 which is located on a tributary of Er-Jen River. Total PAH concentrations in wet season were higher than those found in dry season for all stations in Er-Jen River, except for station Er-3, which suggesting that different geography might be the reason.
¡@¡@Results from correlation analysis indicated that distributions of PAH concentrations for particulate phase in Er-Jen River correlated well with flow rate, suspended solid concentrations and salinity. Total PAH concentration of station Er-2, which was located at the downstream Er-Jen River, was highly correlated with salinity; while total PAH concentrations in other stations were mainly affected by flow rate, suspended solid concentrations and some potential sources of pollution.
Results from PCA, HCA and finger printing all indicated the origins of PAHs were complex sources in the study area, including pyrogenic, petrogenic and diagenetic/biogenic origins. The origins of PAHs in dissolved phase were mainly from both pyrogenic and petrogenic sources; while those in particulate phase were mainly from pyrogenic sources. In addition, the pyrogenic origins in both dissolved and particulate phase were mostly from liquid fuel combustion. In wet season, howerer, diagenetic/biogenic origins were also found in particulate phase at the sampling sites of Er-Jen River.
¡@¡@The annual total PAH fluxes of Er-Jen River were estimated to be 23.1 kg For dissolved phase, the average daily fluxes in dry and wet season were 5.9 g/day and 65.8 g/day, respectively, with an annual mean fluxe of 11.3 kg/year. For particulate phase, the mean daily fluxes in dry and wet season were 0.8 g/day and 76.2 g/day, respectively, with an annual mean flux of 11.8 kg/year. In general, the total PAH fluxes in wet season were higher than dry season. The total annual PAH fluxes in Er-Jen River were generally less than those reported worldwide, and comparable to those in San Francisco River in USA, but higher than those in Le Havre River in France.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0722111-112130 |
Date | 22 July 2011 |
Creators | Lin, Chien-ming |
Contributors | Chi-ying Hsieh, Meng-der Fang, Chon-lin Lee, Ping-chih Huang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0722111-112130 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0016 seconds